内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,
加里.卡斯帕罗夫在1997年对战IBM公司的超级计算机 深蓝 是科技史上的一个分水岭。这是人工智能时代的一个新纪元:在这场*激烈的比赛中,首次出现了能够击败国际象棋世界冠军的机器。那一刻是人类-一个多世纪以来孜孜以求、勇攀科技高峰的结晶。在这本突破性的书中,卡斯帕罗夫第次揭示了他惊人的一面,描述了他在面对*为强大的对手时的谋划与布局,在全世界的注视下奋勇争先,并叙述了通过国际象棋程序的发展考察人工智能的发展历史。 卡斯帕罗夫用他无与伦比的经验审视了智能机器的未来,并预见到它的可能性。许多批评家谴责人工智能是一个巨大的威胁,特别是对某些特定人群的工作岗位而言。卡斯帕罗夫在本书中强有力地论证了:人类不应害怕我们*为非凡的创造物,而是应与之协作,达到新的高度。
《未来可期:与人工智能同行》是一部探讨人工智能的现在和未来,以及人工智能时代的种种难题的作品集。 在ChatGPT横空出世的今天,我们只有了解人工智能,跟上它的脚步,才能不被时代淘汰。家用智能器、数字疗法、具身智能、元宇宙、虚拟人、数字分身 越来越多的新概念已经或即将涌入我们的生活,并切实影响衣食住行的方方面面。作者在书中不仅分析了当前的人工智能发展,更预测在不远的将来,人工智能如何一步步走进和改变我们的生活,如何给我们带来前所未有的便利,又如何给我们带来纷繁复杂的困扰。 人工智能的发展与人类自身的发展是一体两面的关系。作者真正想要预测的并不是人工智能技术会发展成什么样,而是人类会通过人工智能技术发展成什么样。
人类即将全面进入机器人时代。计算机已经可以从事金融交易、控制电力供应和驾驶火车。很快,服务类机器人将能在家照顾老人,军事机器人可以投入战斗。温德尔 华莱士和科林 艾伦认为,当机器人要承担越来越多的责任时,为了我们的安全,它们必须通过程序学会道德判断。在快速回顾了*前沿的道德哲学与人工智能之后,两人主张,设计某种功能性的道德指令,让人工智能机器人习得某些基本的道德感是很有必要的,而且是可行的。并且,即便让机器人承担十足的道德责任有很远的路要走,但随着人类对道德理解的深入和完善,能接收复杂道德指令的各类服务型机器人将诞生。 《道德机器:如何让机器人明辨是非》基于人类道德判断和伦理的本质,深入探讨了人类在设计具有道德判断能力的机器人的漫漫征途上所面临的巨大挑战。
脑机接口研究致力于在人类大脑与外部设备之间建立起连接通路,架设起生物智能和人工智能之间的桥梁。认知科学建立了研究认知(Cognition)和智力(Intelligence)的基本概念和科学方法论,为脑机接口对大脑的工作状态及认知活动的解读提供了理论基础。 本书从认知科学理论、探索脑认知活动的技术手段、脑机接口的代表性技术及其前沿应用四个方面系统介绍脑机接口领域的研究成果。全书内容主要来源于创作组成员多年来在认知科学和脑机接口研究领域的知识积累,不少章节内容直接来自于作者在这些领域的科研成果。创作组成员都是国内认知科学与脑机接口领域的学者,对书中的技术论述力图做到深入浅出、通俗易懂、独立完整。 本书适用于具有一般大学理工科背景的读者,可作为科学技术人员了解认知科学和脑机接口研究领域的参考书,也可作为高等院校面向
l 《人人都应该知道的人工智能》是斯坦福大学教授杰瑞 卡普兰继其畅销书《人工智能时代》之后的又一部重磅新作,详尽地探讨了人工智能的发展和当下面临的迫切问题。 机器在智能和体能方面的进展正在改变我们生活、工作、娱乐、寻找伴侣、教育子女,甚至照顾老人的方式,它还在颠覆我们的劳动力市场,对社会秩序进行重新洗牌,接下来的几十年里,人工智能还会肆意拉扯我们的社会结构直至被打破,未来会像《星际迷航》中那样空前繁荣与自由,还是会像《终结者》中那样爆发人与机器之间无尽的战争?《人人都应该知道的人工智能》有你想知道的一切答案。
机器视觉简单来理解就是一门用机器代替人眼做测量和判断的技术,在现代制造中应用广泛,如在产品定位、缺陷检测、尺寸测量、条码识别等方面均有应用。机器视觉是一门综合技术,包括数字图像处理、自动控制、光源照明、光学成像、传感器、机器人等知识。 本书由浅入深比较全面地介绍了机器视觉的相关知识,包括机器视觉基本知识、工业相机原理及选型、工业镜头特性及选型、光学基本知识及不同打光方案效果、机器视觉其他常用配件、数字图像处理知识及机器视觉算法平台软件MVP等内容。 本书既适合机器视觉相关专业的高校学生学习,也适合机器视觉相关工程技术人员参考学习。
在两位顶尖数据科学家的引导下,你将系统了解LLM前沿技术的更新进展,学习理论知识,以最负责任的方式将LLM技术融入商业场景;将构建一个LLM驱动的应用,直观感受框架的实际运作,掌握数据版本控制、实验跟踪、模型监控和伦理等知识点。 本书旨在为不同层级的数据领域从业者提供助力,使用前沿技术与方法论,全方位呈现LLM应用,介绍上佳技术实践。通过 数据优先 视角,识别整合LLM并驱动业务成功的机会。
数学是机器学习绕不开的基础知识,传统教材的风格偏重理论定义和运算技巧,想以此高效地打下机器学习的数学基础,针对性和可读性并不佳。本书以机器学习涉及的线性代数核心知识为重点,进行新的尝试和突破:从坐标与变换、空间与映射、近似与拟合、相似与特征、降维与压缩这5个维度,环环相扣地展开线性代数与机器学习算法紧密结合的核心内容,并分析推荐系统和图像压缩两个实践案例,在介绍完核心概念后,还将线性代数的应用领域向函数空间和复数域中进行拓展与延伸;同时极力避免数学的晦涩枯燥,充分挖掘线性代数的几何内涵,并以Python语言为工具进行数学思想和解决方案的有效实践。 《机器学习线性代数基础:Python语言描述》适合实践于数据分析、信号处理等工程领域的读者,也适合在人工智能、机器学习领域进行理论学习和实践,
《人工智能入门与实战 使用Raspberry Pi和Python演练》使用Raspberry Pi作为计算平台,介绍AI世界。本书探索了大部分主要的人工智能主题,包括专家系统、浅层和深层的机器学习、模糊逻辑控制等。 主要内容: AI简介、基本的AI概念、专家系统的展示、游戏、模糊逻辑系统、机器学习、机器学习:人工神经网络、机器学习:深入学习、机器学习:ANN展示实践、演化计算、基于行为的机器人等。
本书介绍在人工智能时代,用来建模和求解大规模机器人推断问题所使用的因子图。重点介绍解决机器人面临的大规模推理问题,以及部署机器人的相关知识。因子图相关知识(概率图模型的一种)是机器人感知中至关重要的一环,而机器人感知是机器人领域较难的技术点。希望本书能给读者带来启发。书共通过7章,深入浅出地介绍了因子图数学定义、推断方法,以及真实环境中机器人上的各种应用。在涵盖了详细的背景知识及数学论证的同时,提供了充足的SLAM应用案例以供读者参考。
本书是一本以机器人学、人工智能知识和技术为中心内容的科普及科幻长篇小说。书中通过形象与连续的故事和插图,介绍机器人的发展历史、基本结构与分类,工矿业与农林业、空间与海洋探索、国防与安保、医疗卫生、家庭服务、文化娱乐、教育教学等方面的应用, 机器人化 智能制造工厂、未来宇宙开发和星际航行以及发展方向等。此外,还展望了其他一些新技术或潜在高新技术的未来应用。本书故事情节生动,图文并茂,寓知识性、趣味性和娱乐性于一体,是广大青少年、大中小学生、中小学教师、机器人和人工智能产业园科技与工作人员以及从事科技与产业管理的政府与企业人员的课外阅读佳作,也是对机器人感兴趣的其他读者值得一看的优秀作品。通过阅读本书,读者能够了解机器人的过去、现在和将来,增进对机器人技术的兴趣与认识。
机器学习借助算法让计算机对大量流动数据集进行识别,这种方式能够通过历史数据来预测未来事件和行为。微软公司在其公有云Azure上推出了基于Web使用的机器学习应用工具 Azure Machine Learning ,通过图表化来把握 现在的进度和结果 ,并配备了各种统计处理和多样化的机器学习处理方式,便于开发人员、业务分析师和数据科学家进行广泛、便捷地应用。 书中通过大量的微软机器学习截图,有步骤地讲解了微软机器学习模板构建的方法,是一本实战版机器学习入门手册。 在以前,仅是运作并学习的门槛就已很高,更不用说对机器学习的实际运用。而现在,使用Azure Machine Learning就可以马上进入机器学习的世界。 我们的目标是让技术及商务人士可以通过机器学习,来创造新的服务,并通过数据获得前所未有的视点。