《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年首个印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
流 是指我们在做某些事情时,那种全 贯注、投入忘我的状态 这种状态下,你甚 感觉不到时间的存在,在这件事情完成之后我们会有 种充满能量并且非常满足的感受。其实很多时候我们在做自己非常喜欢、有挑战并且擅长的事情的时候,就很容易体验到 流,比如爬山、游泳、打球、玩游戏、阅读、演奏乐器还有工作的时候。 理理论之父、积 理学奠基人米哈里 契克森米哈赖在3 前,在大量案例研究基础上,开 性地提出了 流 的概念。本书系统阐述了 流理论,进入 流状态的条件,从日常生活、休闲娱乐、工作、人际关系等各方面,阐述如何进入 流状态。对 理学爱好者和研究者来说,《 流》是理解积 理学等领域不可或缺的理论素材;对大众读者来说,这更是 本提升幸福感和效率的行动指南。
达 芬奇是意大利伟大的艺术家、文艺复兴时期的领军人物,同时也是雕塑家、建筑师、解剖学家、自然科学家。本书以达 芬奇的一生为主线,结合时代背景,介绍了他的人生经历和在艺术创作和科学研究上的成长与发展,同时对他的经典作品《蒙娜丽莎的微笑》《岩间圣母》《抱银鼠的女子》《最后的晚餐》的经历进行了细致的讲解,多方面展示了这位 旷世奇才 对后世的影响。真实而细腻地解读了艺术家的生活与创作,使得他独特的人格魅力和艺术风采得以更好地为人所知。
本书为 十二五 普通高等教育本科*规划教材《分析化学》(第6版,上册)的配套教学参考书。全书共11章,编写顺序与主教材一致,对主教材的思考题和习题进行了详细解答,部分章节还增加了一些补充题。 本书既可作为高等学校化学类及相近专业的本科生学习分析化学课程的习题集,又可作为高年级学生考研复习阶段的参考资料,同时也可供广大教师作为教学参考书使用。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。