《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
《时间序列分析:单变量和多变量方法(第2版)》不仅对单变量与多变量时间序列的时域和频域分析提供了一个全面介绍,而且在书中包含了许多单变量和多变量时问序列模型的新进展,如逆自相关函数、扩展样本自相关函数、干预分析及干预探测、向量自回归移动平均模型、偏滞后自相关矩阵函数、局部过程、状态空间模型、卡尔曼滤波、非季节和季节模型的单位根检验等许多内容。《时间序列分析:单变量和多变量方法(第2版)》结合大量的应用实例说明时间序列分析方法的应用,极大地方便了读者对这些方法的学习和理解。
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
微积分是人类智慧伟大的成就之一.300年前,受天文学方面问题的启发,牛顿(Newton)和莱布尼茨(Leibniz)阐发了微积分的诸多概念.自那时以来,每一世纪都证明了微积分在阐明数学、物理科学、工程学以及社会和生物科学方面问题的强大威力.由于微积分具有将复杂问题归纳为简单规则和步骤的非凡能力,迄今已获得相当大的成功.正因为如此,微积分的教学也存在着危险:很可能将这一学科仅仅教授成一些规则和步骤,从而既忽略了数学本身,也忽略了它的实际价值.由于美国国家科学基金会的慷慨资助,我们以哈佛大学为首的合作组,
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对相关领
本书分两部分,上部为堆垒素数论;下部为指数和的估计及其在数论中的应用。第一部分是关于堆垒素数论方面苏联维诺格拉陀夫院士的研究方法和作者自己的研究方法的总结性论著.在这部分中给予维诺格拉陀夫院士的中值定理以显著的中心地位,并且改进了它.作者把华林问题与哥德巴赫问题的研究方法结合起来,井把华林问题一方面推广到每一加数是整系数多项式的情形,一方面限制变数仅取素数值.作者把塔锐问题也加上了变数只取素数值的限制,同时又讨论到更广的素未知数的不定方程组。下部主要讨论了指数和的各种估计方法及其应用,特别讨论了这些方法对Waring问题及问题的应用.除此而外,也谈到了解析数论的其他一些问题与方法.这部分不仅综合了这几方面的结果与文献,更重要的是对其中绝大部分重要的结果都给出了较完各的提纲性的证明。