这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。 这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是知名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
9787115630179 数学与生活4:函数是什么 59.80 9787115544568 数学与生活3 无穷与连续 59.80 9787115542083 数学与生活2 要领与方法 59.80 9787115370624 数学与生活(修订版) 69.80 《数学与生活4:函数是什么》 本书为日本数学家远山启的函数科普作品,书中以 理解函数 为线索,以人物对话的形式,从算术开始逐步讲解函数的本质概念及其发展,为读者完整呈现了函数概念,并引导读者理解 从静止走向运动、从离散走向连续、从运算走向关系 的数学思想。 本书可作为理解函数的科普读物,也可作为函数教学的参考资料。 《数学与生活3 无穷与连续》 不懂音符、乐理的人也能欣赏音乐,甚至可以成为音乐鉴赏家。 不懂数学公式的人,是否也能理解现代数学的体系与思考方法,领略其中令人惊叹的超越性美景呢? 本书是从 欣赏 的角度通俗解读现代数学的科普作品。书中用直观、生动
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
克莱因(Felix Klein,1849 1925)是19世纪末、20世纪初世界数学中心 德国哥廷根学派的领袖,并且热衷于数学教育的改革。本书是具有世界影响的数学教育经典,全书共分3册:册,算术、代数、分析;第二册,几何;第三册,精确数学与近似数学。本次影印前两册的英译本,译者为赫德里克(Earle Raymond Hedrick,1876 1943)和诺布尔(Charles Albert Noble,1867 1962),册用美国Dover图书公司的1945年版,第二册用Dover的1939年版,并将两册合刊。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
斐波那契数列,产生于12世纪意大利数学家斐波那契叙述的“生小兔问题”。从一个十分简明的递推关系出发,竟引出了一个充满奇趣的数列.它与植物生长等自然现象,以及几何图形、黄金分割、杨辉三角、矩阵运算等数学知识有着非常微妙的联系,并且在优选法、计算机科学等领域中得到广泛应用。吴振奎编著的《斐波那契数列欣赏》系统地介绍了斐波那契数列的性质和应用,将知识性与趣味性融为一体,阐述了几代数学家的思维方法,内容丰富,妙趣横生。《斐波那契数列欣赏》适用于大学、中学师生。
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
本书提出了对二阶平稳过程建模理论的论述,对于工程和应用科学也具有重要意义。关于平稳过程的处理在全书开头,这是一个有悠久历史的基础性问题,始于上世纪40年代柯尔莫戈洛夫、维纳等的工作。通过现代数字计算机,关于滤波与平稳随机信号与系统建模也得到了研究和解决,这始于上世纪60年代早期卡尔曼的基础性工作。本书提供了基于希尔伯特空间几何学的逻辑一致的思想主题,以及坐标的自由思想。在这个框架中,随机状态空间和状态空间模型的概念基于对相关信号的过去和未来的流动条件独立的概念,从根本上得到了统一。这本书涵盖了30多年的研究工作,是极有价值的文献,包括随机建模、估计、系统辨识和时间序列分析。它还提供了随机系统理论结构的数学算法工具。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
《数学交叉学科与应用数学丛书·生物数学:种群生物学与传染病学中的数学模型(第2版)》结合大量例子和实际问题,由浅入深地介绍了生物数学中的两个主要领域——种群生物学与传染病学中的数学模型,全书分为单种群模型、物种间相互作用模型、结构种群模型和疾病传播模型4个部分,共10章。 《数学交叉学科与应用数学丛书·生物数学:种群生物学与传染病学中的数学模型(第2版)》可作为生物学、医学、数学等有关专业的大学本科生和研究生的教材,也可供种群生态学、传染病学或进化论生物学等领域的科研人员参考使用.书中提供的大量实际案例和参考文献,是有关人员难得的资源。
《计算流体力学原理》是为从事流体计算的研究生、科研人员、工程师和物理学家而写。《国外数学名著系列()9:计算流体力学原理》首先介绍计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;然后讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难;研究奇异扰动问题的一致性和效率,指出大雷诺数情形下计算流的方法;特别讨论了稳定性分析,给出在许多实际算法中有价值的稳定性条件,其中某些条件是新的;叙述计算可压缩流和不可压缩流的统一方法;给出了狭窄水漕方程的数值分析;论述了双曲守恒律;讨论了戈杜诺夫阶障碍及如何利用有限斜率格式加以克服。简要介绍了运用克雷洛夫子空间理论和多重网格加速的有效的解的迭代方法。《国外数学名著系列()9:计算流体力学原理》还包括许多新
Thisvolumeisapletelynewversionofthebookunderthesametitle,whichappearedin1981asVolume9intheseries"ProgressinMathematics,"andwhichhasbeenoutofprintforsometime.Thatbookhaditsorigininnotes(takenbyHassanAzad)fromacourseonthetheoryofLinearalgebraicgroups,givenattheUniversityofNotreDameinthefallof1978.Theaimofthebookwastopresentthetheoryoflinearalgebraicgroupsoveranalgebraicallyclosedfield,includingthebasicresultsonreductivegroups.Adistinguishingfeaturewasaself-containedtreatmentoftheprerequisitesfromalgebraicgeometryandmutativealgebra.
郝兆宽等著的《集合论(对无穷概念的探索)/逻 辑与形而上学教科书系列》是“逻辑与形而上学教科 书系列”中的一本。书中介绍了集合论的基础知识, 共有集合与公理,关系与函数,实数的构造,基数, 滤、理想与无界闭集,集合的宇宙,可构成集,力追 等g章内容;除了讨论集合论的基本概念,还讨论了可 构成集、力迫法等现代内容,同时还讨论了与连续统 假设相关的一些哲学问题。 编写本书的目的是让读者在初等集合论领域有一 个坚实的基础。本书可以作为数学专业、计算机专业 和哲学专业高年级本科生教材。同时,对于那些关心 数学哲学以及当代数学基础问题的人来说,书中的知 识也是必要的准备 本书还含有大量的习题和思考题,有助于读者深 入理解所介绍的内容。
本书是一部关于流形的拓扑学专著,较全面和系统地介绍了拓扑学大多数重要领域中的理论与方法。内容涉及微分拓扑、同调论、同伦论、微分形式与谱序列、不动点理论、Morse理论,以及向量丛的示性类理论。同时,书中也介绍了作者新发展的流形共轭结构理论,主要结果包括共轭对称性定理,上、下同调群的几何化定理,共轭元球面定理。在这些定理基础上,同调论和同伦论中许多重要定理与结果,如Poincare对偶,Lefschetz对偶,Kunh公式,上、下同调群,以及Hurewicz定理等的实质及直观意义变得更清楚了。 本书适合于数学、理论物理等相关专业的高年级大学生、研究生、教师及研究人员学习和参考。
该书通过重点介绍现代概率论的分析思路与其所用的分析工具之间的相辅相成的关系,相当详细地介绍了现代概率论。第2版中的练习题超过750道,并且对Levy过程、大偏差理论、Banach空间上的Gauss测度、Wiener测度与偏微分方程的关系等添加了许多新的素材。书的第1部分介绍了独立随机变量、中心极限现象、弱收敛性的通用理论及其几种应用,以及关于函数空间上的Gaussian和Markovian测度理论。
《复杂曲面数字化制造的几何学理论和方法》系统地总结了作者丁汉,朱利民在复杂曲面数字化制造基础理论方面的研究成果。全书共7章,~4章为几何学基础,沿着曲线、曲面论→曲面上的几何学→高维微分几何→Lie群、Lie代数的线路循序渐进地介绍了现代微分几何和运动学的基础理论、内在联系及统一分析方法,并结合应用穿插介绍了一些外的成果。第5~7章以微分几何和化为工具,介绍了作者提出的曲面测量、加工和夹持定位的新原理和新方法,具体内容包括:点一曲面法向误差函数的可微性条件及其二阶导数的解析计算方法,散乱点云曲面逼近的统一方法体系,回转刀具扫掠包络面的解析表达、局部重建与整体形状控制原理,自由曲面线接触和高阶点接触数控加工刀位规划理论和方法,刀具全局可达方向锥的GPU计算方法,夹持完全约束性判别和夹具定位误差