《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是知名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。 这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是知名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
克莱因(Felix Klein,1849 1925)是19世纪末、20世纪初世界数学中心 德国哥廷根学派的领袖,并且热衷于数学教育的改革。本书是具有世界影响的数学教育经典,全书共分3册:册,算术、代数、分析;第二册,几何;第三册,精确数学与近似数学。本次影印前两册的英译本,译者为赫德里克(Earle Raymond Hedrick,1876 1943)和诺布尔(Charles Albert Noble,1867 1962),册用美国Dover图书公司的1945年版,第二册用Dover的1939年版,并将两册合刊。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
本书从几个著名数学问题出发,深入浅出地讲解了与我国初高中的教学实际紧密联系的数学知识,并把知识内容与数学核心素养结合起来。在这条知识主线的周边,穿插介绍知识内容的历史发展过程,对相关数学分支在数学史上的地位进行深入思考,并辅之以数学文化、趣味知识、数学游戏、数学悖论等茂盛枝叶。全书共6章,第1章介绍无处不在的杨辉三角;第2章介绍当我们谈论正方体时,我们能够谈论些什么;第3章介绍了神奇的 2;第4章介绍斐波那契数列与黄金分割;第5章介绍圆锥曲线面面观;第6章介绍感悟数学的魅力与威力。 本书根据中学生的实际需要,并结合 500多幅精美的插图进行讲解,全书讲解清晰自然、特色鲜明,非常适合初高中学生、初高中数学教师、数学爱好者阅读。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
斐波那契数列,产生于12世纪意大利数学家斐波那契叙述的“生小兔问题”。从一个十分简明的递推关系出发,竟引出了一个充满奇趣的数列.它与植物生长等自然现象,以及几何图形、黄金分割、杨辉三角、矩阵运算等数学知识有着非常微妙的联系,并且在优选法、计算机科学等领域中得到广泛应用。吴振奎编著的《斐波那契数列欣赏》系统地介绍了斐波那契数列的性质和应用,将知识性与趣味性融为一体,阐述了几代数学家的思维方法,内容丰富,妙趣横生。《斐波那契数列欣赏》适用于大学、中学师生。
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
本书提出了对二阶平稳过程建模理论的论述,对于工程和应用科学也具有重要意义。关于平稳过程的处理在全书开头,这是一个有悠久历史的基础性问题,始于上世纪40年代柯尔莫戈洛夫、维纳等的工作。通过现代数字计算机,关于滤波与平稳随机信号与系统建模也得到了研究和解决,这始于上世纪60年代早期卡尔曼的基础性工作。本书提供了基于希尔伯特空间几何学的逻辑一致的思想主题,以及坐标的自由思想。在这个框架中,随机状态空间和状态空间模型的概念基于对相关信号的过去和未来的流动条件独立的概念,从根本上得到了统一。这本书涵盖了30多年的研究工作,是极有价值的文献,包括随机建模、估计、系统辨识和时间序列分析。它还提供了随机系统理论结构的数学算法工具。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
《计算流体力学原理》是为从事流体计算的研究生、科研人员、工程师和物理学家而写。《国外数学名著系列()9:计算流体力学原理》首先介绍计算流体动力学中的数值方法的现状;运用基本的数学分析,详尽阐述数值计算的基本原理;然后讨论流域和非一致结构化边界适应网格的几何复杂性带来的困难;研究奇异扰动问题的一致性和效率,指出大雷诺数情形下计算流的方法;特别讨论了稳定性分析,给出在许多实际算法中有价值的稳定性条件,其中某些条件是新的;叙述计算可压缩流和不可压缩流的统一方法;给出了狭窄水漕方程的数值分析;论述了双曲守恒律;讨论了戈杜诺夫阶障碍及如何利用有限斜率格式加以克服。简要介绍了运用克雷洛夫子空间理论和多重网格加速的有效的解的迭代方法。《国外数学名著系列()9:计算流体力学原理》还包括许多新
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书是一部关于流形的拓扑学专著,较全面和系统地介绍了拓扑学大多数重要领域中的理论与方法。内容涉及微分拓扑、同调论、同伦论、微分形式与谱序列、不动点理论、Morse理论,以及向量丛的示性类理论。同时,书中也介绍了作者新发展的流形共轭结构理论,主要结果包括共轭对称性定理,上、下同调群的几何化定理,共轭元球面定理。在这些定理基础上,同调论和同伦论中许多重要定理与结果,如Poincare对偶,Lefschetz对偶,Kunh公式,上、下同调群,以及Hurewicz定理等的实质及直观意义变得更清楚了。 本书适合于数学、理论物理等相关专业的高年级大学生、研究生、教师及研究人员学习和参考。
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
本书是代数组合的入门教材,主要内容包括图中的游动、Randon变换、偏序集的Sperner性质、杨图、杨表、矩阵树定理、有向树、定向树以及组合数学中的一些“珍宝”。作者将代数学中一些简单和基本的工具巧妙地应用到组合数学中,每章论述一个经典且有趣的课题,章末简要阐明了所述问题产生的历史背景、相关故事以及现有的应用领域。最后精选的练习指出了相关问题进一步的发展方向。
美国萨奥尔编著的《数值分析》是一本的数值分析教材,书中不仅全面论述了数值分析的基本方法,还深入浅出地介绍了计算机和工程领域使用的一些高级数值方法,如压缩、前向和后向误差分析、求解方程组的迭代方法等。每章的“实例检验”部分结合数值分析在各领域的具体应用实例,进一步探究如何更好地应用数值分析方法解决实际问题。此外,书中含有一些算法的matlab实现代码,并且每章都配有大量难度适宜的习题和计算机问题,便于读者学习、巩固和提高。
《数学大辞典》是一部综合性的数学大辞典,涵盖数理逻辑与数学基础、数论、代数学、分析学、复分析、常微分方程、动力系统、偏微分方程、泛函分析、组合数学、图论、几何学、拓扑学、微分几何、概率论、数理统计、计算数学、控制论、信息论、运筹学等学科,以常用、基础和重要的名词术语为基本内容,提供简短扼要的定义或概念解释,并有适度展开。正文后附有数学发展历史纪要、人名译名对照表等附录,并设有便于检索的中、英文索引。 《数学大辞典》可供数学及相关专业的科技工作者,大专院校师生,中学数学教师,数学爱好者,以及具有大专以上文化程度的其他读者参考使用。
《现代数学基础丛书·典藏版73:调和分析及其在偏微分方程中的应用(第二版)》内容涉及调和分析的经典理论,特别是与偏微分方程研究密切相关的方法与技巧。例如:C-Z奇异积分算子、Littlewood-Paley理论、抽象插值方法、可微函数空间的调和分析刻画等。同时着力于用调和分析的方法研究偏微分方程,为此,详细讨论了振荡积分理论、Fourier限制型估计及相应的Strichartz估计、Keel-Tao端点时空估计等。借助于调和分析的现代理论与方法,研究了波动及色散方程的Cauchy问题的适定性、低正则性与散射性理论。第二版对一些内容进行了增删,诸如:增加了发展型方程的调和分析方法的研究背景、非线性Klein-Gordon方程的低正则性,删除了波动方程的散射性。重新改写了一些章节,增加了许多注记,以反映这一领域的新进展。《现代数学基础丛书·典藏版73:调和分析及其在