概率论是数学学科里很基础、很年轻、应用很广泛的一门学科,它不仅和我们日常生活息息相关,更是当今大火的大数据和人工智能技术的基础。不学概率论,就没法看懂前沿科技,没法理解现实世界,更没法预知和抓住未来。 作者通过生活中的案例,从通识的视角,带读者学习正态分布、幂律分布、大数定律、贝叶斯计算、方差和期望,让这些内容不再是高深莫测的数学概念,而是你能运用于自己决策的数学工具。 只要会四则运算,你就能够通过这本书学会概率论的相关概念,培养概率论思维,并将其应用于日常生活中,提升决策能力。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书是世界公认的《回归分析》标准教材(aleadingtextbookonregression)。不仅从理论上介绍了当今统计学中用到的传统回归方法,还补充介绍了尖端科学研究中不太常见的回归方法。难能可贵的是,作者有丰富的教学经验和实际应用经验,使得本书理论和应用并重,还给出实际应用中应该注意的问题。新版除利用Minitab,SAS,S-PLUS软件外,还融入了*流行的JMP软件和R软件,来阐释相关技术方法。配套资源很丰富,数据、教学PPT等可免费下载。
读完本书,你定会为你上学期间没机会读到这样的数学书而感到懊恼不已! 本书作者阿瑟 本杰明是享誉全球的 数学魔术师 ,他独创性地将许多人避之不及的数学与许多人津津乐道的魔术结合在一起,为众多数学恐惧症成人患者、正在学习数学的学生们开启了一个奇妙美丽的数学魔法世界。 本书堪称 12堂极简数学课 ,囊括了我们从小学到中学到大学必须掌握的12个*重要的数学概念,比如算术、代数学、几何学、三角学、微积分、圆周率、无穷大等。更重要的是,本杰明既是一名优秀的数学教授,更是一位高明的魔术师,他的魔术棒所指之处,会让我们茅塞顿开。他在书中为我们准备了神奇精彩的数学魔术、开脑洞的智力问题,让我们在这趟数学的魔法世界之旅中,从大自然中领略斐波那契数列之美,从小幽默中领会到无穷大的奥秘,从《达 芬奇密码》中窥见黄
在人类所有的发明中,数学和诗歌无疑是*古老的。可以说自从有了人类的历史,就有了这两样东西。如果说牧羊人计算绵羊的只数产生了数学,那么诗歌则起源于祈求丰收的祷告。无论数学还是诗歌,它们的故事和触角遍及人类社会的每一个角落,以及历史和生命的每一个瞬时。 《数学的故事》共分三辑,共讲述了20个如诗歌一般优美的数学故事。甲辑是中外或者东西合璧的7个数学故事;乙辑是8个有关数学家的故事,涉及10多位专业或业余的数学家;丙辑的故事围绕5个有趣的数学问题展开,深入浅出且具有一定的挑战性。 为引发同学们、老师们甚至家长们的喜爱,作者在以下几个方面做了努力: 可读性:语言质朴自然,生动有趣,留有余味。 可视性:图文并茂,有些插图是作者亲自在故事发生地拍摄的。 想象力:每则故事都不只是某一位数学家的故事,而是
本书是中美数学教育专家联合打造了一部认识数学的导引读物。从简单的加减乘除一直到数学初等研究,手把手引领初等数学学习者,尤其是青少年读者体验并非应试教育的真正的数学。著名教育家马克 范多伦曾说, 教学的艺术,就是帮助学生发现问题的艺术! 本书的作者数学教育资深专家詹姆斯 坦顿博士和哈罗德 莱特博士就是通过提出问题、解决问题、发现新问题来让读者体会到数学有趣而智慧的本来面貌。这本科普读物从数学基本概念理解、数学研究短文、问题解决三个维度为读者呈现数学之美,丰富数学视野。本书的编译者邹云志博士是四川大学和西湖大学的数学教授,他是美国数学评论评论员,中国自动化学会人工智能与机器人教育专业委员会委员,四川省人才研究会学术委员。邹教授是两位美国作者的多年好友,对本书内容的选择组稿以及中文呈现
本书是美国著名数学竞赛专家Titu Andreescu教授及其团队编写的数学竞赛数论知识教材。书中涵盖了整除、优选公约数、算术基本定理、数论函数、同余方程、模p多项式、二次剩余、p进赋值等主题。通过精彩的例题重点展现了带余除法、裴蜀定理、高斯引理、同余计算、积性函数、费马小定理、强三角不等式、二次互反律、素数估计、局部一整体原则的应用。课后共有二百多道习题供练习。本书适合热爱数学的广大教师和学生使用,特别是从事数学竞赛相关事业的人员参考使用。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为提高篇,分为三角形与四边形、相似、圆、勾股定理等四个章节。书中详细地证明了常见的几何定理,并指导读者通过这些定理掌握高效的解题方法,培养正确的几何思维。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书是在复分析领域产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美。书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。
朋友们,85×85=?你能瞬间算出这道数学题的答案吗?学习了本书所教授的印度吠陀数学的计算方法,2秒钟就可以给出答案。也许你会惊讶,“这是数学还是魔术?”但是,真的就有这么神奇! 印度吠陀数学的创始人巴拉蒂?克里希纳?第勒塔季在1911~1918年期间潜心研究印度古代吠陀经文,在此基础上重构了数学计算体系,并将其传播到世界各地。吠陀数学比一般的计算方法快10~15倍,其结构连贯、完美、准确且容易计算。理解了吠陀数学法则,便可以创造出自己的解题方法,也可将其运用于现代数学——代数、几何、三角函数、微积分等科目中。本书是以两位数的运算为例来阐述的,可谓是吠陀数学的入门篇。每天花十分钟做练习题,并把这些简单又神奇的法则熟记于心,这会成为以后进行熟练运算的基础。也会使你成为酷的数学达人!
癌症、疑难慢性病如何治疗和康复?本书作者通过自身的经历,对治疗“ 症”提出了一些新思路、新理念和新方法。倡导文化的医学功能,是本书的主题,也是作者三十余年与癌症和平共处的经验总结。文化的力量,比我们想象的强大。
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
教学是与教育相伴随的人类活动。随着社会的进步发展和对教育要求的不断提高,有效教学也日益成为人们关注的问题。有效教学的概念虽然是近些年来才在我国教育领域逐步流行起来,但从有效教学的理论层面看,它是一个与教学理论相伴生的隐性命题,因为,任何一种教学理论在学理追求上总是为有效教学辩护的,很难想象有哪一种教学理论将无效教学作为理论诉求。从这一角度看,任何教学理论都是有关有效教学的、理论。 当然,一种教学理论是否有效或者有效的程度,是要通过教学实践予以检验的。只是在检验理论的过程中,我们还需要判断理论实施的条件和边界问题,因为验证的结果与这些因素密切相关。在这个意义上,理论的有效性与其实施结果往往也不能简单地画上等号,在实际的教学改革中,理论与实践的关系是十分复杂的。本书的编写也
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
本书为 理论物理学家大栗博司先生写给女儿的数学启蒙书,书中以用“数学语言”解读自然为线索,突破传统数学教育的顺序和教学方式,用历史事件、生动故事以及比喻直接讲解数学核心概念的原理与相关体系,并且讲解了把数学作为一门“语言”、用数学探索自然不可见结构的思维方式,是重新认识和理解数学的科普佳作。增订版对各章内容进行了补充与扩展,使本书内容 为翔实。
近代 数理逻辑学家王浩在数学、逻辑学、计算机科学领域有着超高天赋和开拓性成果,他一生痴迷于哲学研究,是对世界哲学作出过深刻贡献的华裔学者。本书是王浩的代表作,是其正面集中阐释自己哲学思想的作品。循着从柏拉图到哥德尔的“数学-哲学家”传统,王浩在书中 对实质事实主义一般立场进行了长篇阐发;广泛、深入地讨论了数学哲学的诸议题;探索了心灵与机器、数学与计算机、知识与生活等话题;还重点考察了逻辑和数学领域的一些基本概念。此次中译本 出版,由专业译者精心翻译,以助读者 好地理解王浩的数学哲学思想。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于**后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。
概率论的本质上面的故事虽然是我虚构的,但却从本质上揭示了概率论解决问题的思维框架。澳大利亚网球公开赛男单决赛的第四局谁会赢,我不知道;最后谁拿冠军,我也不知道。就像抛硬币时下一次是正面还是反面,掷骰子时下一把是什么数字,明天的股票会涨还是会跌,买的彩票会不会中奖这些事情一样,它们的结果都是随机的,是不可预测的。但在停电的这个当下,我们如何分这200块钱,却是确定无疑的。概率论解决随机问题的本质,就是把局部的随机性转变为整体上的确定性。这不仅是概率论的思想基石,也是概率论作为一种数学工具的基本思路。有了概率论,我们就能对生活中随机的事情,对未来发生的随机的事情,做出数学上确定性的判断。我们都知道量子力学中那只和HelloKitty齐名的薛定谔的猫,我们不知道那只猫下一秒是生还是死,但它生死可能