《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯·克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷——第一卷“算术、代数、分析”,第二卷“几何”,第三卷“准确数学与近似数学”。
佩捷、朱惠霖编著的《从比勃巴赫到德布朗斯--比勃巴赫猜想的历史(精)/影响数学世界的猜想与问题》详细介绍了德布朗斯证明比勃巴赫猜想的历程及相关的数学专业理论,本书适合于高等学校数学及相关专业师生使用,也可供数学史爱好者阅读。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
佩捷等著的《从布尔到豪斯道夫--布尔方程与格论漫谈》主要介绍布尔代数、广义布尔代数、布尔矩阵、布尔方程等一系列知识,并讨论它们在逻辑线路等方面的应用,还介绍了格论、格群、格环的一些相关知识。 《从布尔到豪斯道夫--布尔方程与格论漫谈》适合于高等学校数学及相关专业师生使用,也适合于数学爱好者参考阅读。
集合论的主要概念(基数、序数、超限归纳)对于所有数学家都是最基础的,并非于研究数理逻辑或集合论拓扑的专家。通常分析、代数或拓扑学的课程只会给出基础集合论的一个概貌,然而事实上它足够重要、有趣和简单,值得慢慢地学习品味。 《集合论基础》使得读者能够以悠闲品味的方式学习集合论的内容,它适用于广大范围的各类读者,从本科生直至那些想要最终掌握超限归纳并且理解它为何总被Zorn引理替代的数学家。 《集合论基础》介绍了“朴素”(非公理化)集合论的所有主要内容:函数、基数、有序集和良序集、超限归纳及其应用、序数、序数上的运算。《集合论基础》还包括对Cantor-Bernstein定理、Cantor的对角构造、Zorn引理、Zermelo定理和Hamel基的讨论和证明。此外,书中还给出了150多道问题,循序渐进地揭示了集合论基本思想和方法,内
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
《古今数学思想》(第2册)论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。 《古今数学思想》(第2册)的一些篇章只提出所涉及的领域中已经创造出来的数学的一些样本,可是我坚信这些样本有代表性,再者,为着把注意力始终集中于主要的思想,我引用定理或结果时,常常略去严格准确性所需要的次要条件。本书当然有它的局限性,作者相信它已给出整个历史的一种概貌。