本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书主要收集了四面体几何元素的位置关系研究的新成果,全书分为两篇,共十章,该书应用类比的方法,将三角形中共点、共线、共圆等性质引申推广至四面体中,并得到一系列四面体中的共点、共面、共球等性质。希望该书的出版能为读者进一步开展四面体几何学研究提供参考。本书可供中学数学教师及高中生、大学生在内的广大几何爱好者阅读,也可用作几何学及数学教育相关方向硕士研究生的教学参考书。
本套书是大学“高等代数”课程的辅导教材,是作者多年来在北京大学从事高等代数数学工作的结晶。本套书共有11章,分上、下两册。每章节主体结构包括内容精华、典型例题、习题三部分,章末还有补充题。本书阐述了高等代数的理论,总结了高等代数中重要的典型题型及考研题型,提炼了解题的规律、方法和技巧,旨在通过对理论的阐述以及解题方法和技巧的分析,使读者能掌握理论,举一反三、触类旁通。本书可作为“高等代数”或“线性代数”课程的教学参考书,也可供从事高等代数或线性代数教学的教师参考,还可作为工学、理学、经济学、管理学等学科专业硕士生入学考试数学科目的复习用书。
本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例 清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
陈春宝、沈家骅主编的《高等数学解题方法与同步指导(配同济大学编高教5版6版)》为配合同济大学数学系主编的《高等数学》(第五、六版)(高等教育出版社出版)教学而编写。全书共12章,每章由教学目的与要求,知识点精要及基本题型与同步练习两大部分组成。本书有如下特点:1.集中要点,与教学同步。根据教材顺序,每次课一个单元将每节的知识点归纳集中在一起,与教学同步给出练习题,题型既有常规的也有一些比较特殊的,尤其对付考试的一些题型,便于读者整体掌握本章节内容,同时方便读者随时检索查阅这些详细题解。2.多级筛选,突出重点。按照教材的要求,本书对各章、节内容进行了分阶段筛选、分步练习。使学生及时掌握有关内容、发现知识的缺陷并随时补足。这样,学习者可按照自身的情况制定学习方案。3.循环复习,强化记忆。本书每章
本书前两章研究出土算术文献的文本和思想内容。主要创新点是:提出两种整理出土算术文献文本的新方法;证明清华简《算表》有开平方功能;为简牍性质问题提供新线索。第三。章讨论学界判断算术文献成书年代的主流方法:该方法针对的是度量衡等时代信息 的零星信息,但在一本已经定型的书中,这些信息恰恰是 容易被后代改动的,不能作为主要依据。在此基础上,作者提出新的解决思路。第四章研究数学与儒学的互动。第五章研究数学与史学的互动,主要是解决其中跟数学有关的疑难问题,比如讨论《史记》记载的孔子俸禄和《汉书》记载的汉代“提封田”(领土面积)。后两章是目前学术界较少关注的。
本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。