素数论这一古老的数学分支,包含着许多诸如哥德巴赫问题那样的有趣而又艰深的难题。为了解决这些问题,素数论既借助也带动了其他数学分支的发展,因而素数论迄今仍是一个活跃的领域。 本书旨在介绍素数论的主要内容,书中谈到了许多的数论问题和猜想,简介了解决这些问题的方法和近代成果。介绍了我国数学家在这个领域里的重要贡献。本书的前一半只用到了中学的数学知识,而具备一些数学分析的知识后就可以读完后一半。全书写法简捷,深入浅出,可供中学生和广大数学爱好者阅读。
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
全书共分三部分:部分皇冠上的明珠——哥德巴赫猜想简介与综述;第二部分中国解析数论群英谱;第三部分数论英雄——陈景润。 本书叙述了哥德巴赫猜想从产生到陈景润解决“1 2”问题的历史进程,突出记叙了陈景润在当时恶劣的生活环境中解决数学难题的勇气、智慧和毅力,他所取得的成绩,他所赢得的殊荣,为千千万万的知识分子树起了一面不凋的旗帜,召唤着青少年奋发向前。
本书以英文的形式介绍了表示论基本教程。
The "abstract,""formal"or"axiomatic"direction,to which the fresh impetus in algebra is euc ,haw led ,haw led to a numbe of new formulations of ideas,insight into new interrelations,and far-reaching results results,especially in group theory ,field theory,valuation theory, ideal theory,and the theory of hyperplex numbers.The principal objective of this reason ,genreral concepts and methods stand in the foregorund ,particular results which properly belong to classical algebra must also be give appropriate consideration within the framrwork of the modern development.
斐波那契数列的理论是初等数学中困难而有趣的问题,它与“高深数学”的历史、问题和方法有紧密的联系。从有名的兔子问题开始几乎经历了八百年久远的岁月。迄今为止。斐波那契数列仍然是初等数学中最吸引人的一章。和斐波那契数列有关的问题在许多数学普及读物中都会出现,在学校的数学小组中常作为教材,在数学奥林匹克中也常被提及。 这本书包含的问题是列宁格勒国立大学1949—1950学年学生数学小组的某些学习材料。根据小组参加者的愿望,偏重于研究数论方面的内容;在本书中对于这些问题作了比较详尽的阐述。 在书中论及整除理论和连分数理论,阅读这些内容,不需要超出中学课程范围的预备知识。 本书适用于大学、中学师生。
在把握阵列天线理论体系的基础上,本书重点介绍经典的、实用的分析与综合方法,为了使理论与工程实际相结合,书中采用相关综合方法设计的实际阵列天线,包括实物照片或仿真模型、仿真结果和实测结果。共8章,主要内容包括:直线阵列及其分析、直线阵列的综合理论与方法、平面阵列及其分析、平面阵列的综合理论与方法、阵列天线的优化综合理论及方法、相控阵天线基础、阵列天线的稀疏技术理论与方法,以及大间距平面阵栅瓣抑制的理论和方法等。本书提供配套电子课件。