本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
本书分上、下两册出版。 莫宗坚、蓝以中、赵春来编著的《代数学(上第2 版)/现代数学基础》主要讲述近代代数的初步知识, 内容包括集合论与数论、群论、 多项式论、线性代数以及域论。 本书内容丰富,直观性强,推理自然,解释详尽 。此书的独到之处是 特别注重对于代数学的背景、基本思想以及与其他学 科的联系等方面的 介绍。书中精选了大量的例题和习题。本书的起点低 ,由浅入深。具有 高等代数基础知识的读者皆可以阅读本书,进而学到 现代代数学的较大部 分基础知识。 本书可作为高等学校数学系 高年级学生以及研究 生的教材,也可供 数学工作者参考。
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
阿廷编著的《代数》是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容。又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有益处的, 本书是一本有深度、有特点的著作,适合数学工作者以及基础数学、应用数学等专业的学生阅读。
阿廷编著的《代数》是一本代数学的经典著作,既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容。又介绍了环、模、域、伽罗瓦理论等较为高深的内容,对于提高数学理解能力、增强对代数的兴趣是非常有益处的, 本书是一本有深度、有特点的著作,适合数学工作者以及基础数学、应用数学等专业的学生阅读。
数作为产生自然数的原本形式,它已有上万年的历史。虽然有史以来,人们就已应用敷数这一计数方法,但在数学研究领域却完全忽略了“数计数”这种基本的数学形式,使之成为数学研究中的一项空白。在本书讨论的整个过程中,根据数这种原本形式表现出的性质与规律,创造出了“薛海明筛法”,从根本上改变了“古典筛法”以及现代数论中应用的一些新的筛法理论工具,并对素数的判别,合数的分解,求素数的分布个数,孪生素数的分布,哥德巴赫猜想等有关素数难题全部归纳为系列化讨论。它将系统地告诉我们,商数、余数、合数、素数、偶数、各种因子等多种不同形式的有序分布规律与各数之间的关系。这种全部运用系列化探讨自然数的方法,对数学的发展有着深远的意义,也是开启对敷数性质,规律研究的一部原创数学专著。
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。
为适应目前数学教育改革趋势,我们特组织一批骨 对师范生必修课程《初等代数研究》进行教材方面的改革。《初等代数研究》包括:数系、式、函数、方程、不等式、数列、组合数学初步、概率论、数理统计和数学建模十个部分。 本书依据 课程标准(高中和义务教育阶段)中对数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大数学核心素养的考查要求,设置相应板块,旨在整合学生的知识体系,加强大学数学与中学数学知识的联系,将二者充分融合。 本书可作为全日制高等师范院校培养本科生、研究生的教材或参考书,也可以作为数学教师、数学爱好者的参考书。
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972.As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students.We have assumed some familiarity with the materialin a standard undergraduate course in abstract algebra.A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading.The later chapters assume some knowledge ot'Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast.Any intro-ductory book must, of necessity, make a very limited selection from the fascinating array of possible topics.Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry.By a careful selection of subject matter we have found it possible to exposit some rather advanc
本书的主要目的是为那些学习组合学现有技巧的人们提供帮助。学习这些技巧的*有效的方式是去求解练习和问题,这本书以问题和系列问题的形式呈现了所有的内容(除了每章节开始的一些一般注解外)。在第二部分,给出了每个练习的提示,其中包含了解答所需的主要想法,但是允许读者通过完成证明来练习这些技巧。在第三部分,给出了每个问题的完整解答。 本书对那些打算研究图论、组合学或者它们应用的学生,以及那些认为组合技巧能够对他们在数学其他分支、计算机科学、管理科学、电子工程等领域的工作有所帮助的研究者们,都将很有用处。读者只需要有线性代数、群论、概率论和微积分的背景知识就可以了。
利用有限Abel群构建公钥密码系统现在已经成为著名的范例,而代数几何学通过有限域上的Abel簇提供了一些这样的群,特别令人感兴趣的是Abel簇为代数曲线的Jacobi簇的情形。本书中的所有文章都聚焦于有限域上曲线的Jacobi簇的点计数和显式算法这一主题。这些文章的论题包括Schoof的 l 进点计数算法、Kedlaya 和 Denef-Vercauteren的 p 进算法、Cab 曲线和zeta函数的Jacobi簇的显式算法。 本书的文章大部分都适合希望进入这一领域的研究生独立学习,这些文章既介绍了基础性材料,又能引导读者深入到文献中去。密码学的文献看上去是呈指数型增长的,对于一个入门者来说,穿越这片海洋令人望而却步。本书会将读者引向关于这一数学分支的若干新思想的讨论,并给出进一步阅读的简明指引。 本书适合对密码学以及数论和代数几何的应用感兴趣的研究生和研究人员阅读。