《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fi elds奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Morde
《代数学方法(*卷) 基础架构》主要目的是介绍代数学中的基本结构,着眼于基础数学研究的实际需求。全书既包括关于群、环、模、域等结构的标准内容,也涉及范畴和赋值理论,在恪守体系法度的同时不忘代数学和其他数学领域的交融。《代数学方法(*卷) 基础架构》可供具有一定基础的数学专业本科生和研究生作为辅助教材、参考书或自学读本之用。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范数等相关的小节,扩展了与逆矩阵和矩阵块相关的内容,对基础线性代数和矩阵理论作了全面总结,有1100多个问题,并给出一些问题的提示,还有很详细的索引.本可作为工程硕士以及数学、统计、物理等专业研究生的教材,对从事线性代数纯理论研究和应用研究的人员来说,本书也是一本推荐的参考书。
本书沿着一条简捷的途径,着重地介绍了代数K-理论在拓扑学、几何学、数论和算子代数中有重要应用的K0群、K1群及K2群的基本理论,K0群的三种等价定义,K1群和K2群的同调刻画,以及它们之间的正合列等,可将读者带到这一学科的前沿。同时还介绍了类数计算及K2群计算方面的一些基本结果及近十年来外学者得到一些新成果。全书自成体系,学过线性代数和近世代数的读者都可阅读。本书可作为数学系高年级学生及研究生的,也可供高校数学教师及数学研究人员阅读和参考。
代数学习题集(第4版)
微分Galois理论在*近的数十年中已经成为诸多方向上的研究热点。本书是自封闭的,通过展示Picard-Vessiot理论,即线性偏微分方程的Galois理论,将读者带入主题。书中的*部分和第二部分给出了所需的代数几何和代数群的先导知识,第三部分包括Picard-Vessiot扩张、Picard-Vessiot理论的基本定理、求积法的可解性、Fuchs方程、单值群和Kovacic算法。书中的100多道习题可以帮助读者深入理解相关的概念并扩展了部分主题。 本书可作为研究生的微分Galois理论课程的教学参考书。*后一章中包含的扩展阅读的若干建议激励读者进入微分Galois理论或相关领域的更深入的不同主题。
Alexander Grothendieck以极其深刻、极富创造性的思想,使得代数几何学发生了里程碑式的变革。他在1957年到1962年的布尔巴基讨论班上给出了他的新理论的一个概述,然后将这些讲义整理成一系列的文章,编成了著名的《基础代数几何学》(Fondements dela g om trie alg brique),即我们熟知的FGA。 FGA中的许多内容目前已广为人知,然而仍有一些知识是大家所不了解的,只有少数几何学家熟悉它的全部内容。本书源自2003年在意大利的里雅斯特(Trieste)开设的基础代数几何高级学校,目的就是完善Grothendieck对于其理论过于简要的概述。本书讨论的四个重要主题为: 下降理论、Hilbert和Quot概形、形式存在定理和Picard概形。作者们给出了主要结果的完整证明,在必要时使用较新的概念以使读者更好理解,并且阐述了FGA的理论与新近发展的联系。 本书适合于对代数几何学感兴趣的研究生和
本书属于美国数学会影印系列。本书收集的关于向量丛和相关主题的一系列前沿文章源自2006年10月举办的Clay数学研究所的专题讨论班,讨论班聚集了一批受益于P. E. Newstead在20世纪60年代首次访问美国时的开创性工作的学者们。向量丛的模空间在60年代时还处于萌芽阶段,但是现在,就像在本书中所展示的,它已经成为辛几何、数论、数学物理和代数几何的一个强大工具,在21世纪初已呈现出生机勃勃的发展趋势。 这些文章需要读者具备代数几何、辛几何和泛函分析的实用知识,而这些开拓性的思想或许会激励诸多方向上的工作,例如: Langlands纲领、在曲面和三维流形上的向量丛稳定性准则、与模空间的算术性质有关的Abel簇和Brauer群上的线性列。 本书适合于对代数、辛几何和微分几何感兴趣的研究生和专业研究人员阅读。
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。
数作为产生自然数的原本形式,它已有上万年的历史。虽然有史以来,人们就已应用敷数这一计数方法,但在数学研究领域却完全忽略了“数计数”这种基本的数学形式,使之成为数学研究中的一项空白。在本书讨论的整个过程中,根据数这种原本形式表现出的性质与规律,创造出了“薛海明筛法”,从根本上改变了“古典筛法”以及现代数论中应用的一些新的筛法理论工具,并对素数的判别,合数的分解,求素数的分布个数,孪生素数的分布,哥德巴赫猜想等有关素数难题全部归纳为系列化讨论。它将系统地告诉我们,商数、余数、合数、素数、偶数、各种因子等多种不同形式的有序分布规律与各数之间的关系。这种全部运用系列化探讨自然数的方法,对数学的发展有着深远的意义,也是开启对敷数性质,规律研究的一部原创数学专著。