《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、γ函数和b函数、椭圆函数、cauchy型积分。上列最后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
偏微分方程是近处来发展迅速的一门科学,它在数学与物理的很多分支领域有着重要的应用。本书是一部的教科书,其中囊括了偏微分方程其本而重要的内容,如一维波动方程、热传导方程、半平面上的椭圆方程和Scurodinger方程描述模型,都是阶段相关专业必学的内容。此外本书还包含类型甚广的习题,部分习题配有答案以供参考。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
本书系统讨论了不确定度的基础和原理,详细研究了不确定度的各种方法,分析了不确定度的多方面应用。本书可供计量测试、质量监督、认可认证、标准、科研、生产人员以及大专院校师生使用。
本书是一部备受专家好评的教科书,书中用现代的方式清晰论述了实分析的概念与理论,定理证明简明易懂,可读性强,全书共有200道例题和1200例习题。本书的写法像一部文学读物,这在数学教科书很少见,因此阅读本书会是一种享受。
《数学解题与研究丛书:集合、函数与方程》是一部高中数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了高中数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、大学师生及初等数学爱好者研读,或作为高中数学竞赛辅导资料和师范大学数学教材教法方面的教材。