《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、γ函数和b函数、椭圆函数、cauchy型积分。上列最后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
《数学解题与研究丛书:集合、函数与方程》是一部数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
本书由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于本书的详细介绍,请见“前言”。 本书已被哈佛大学和加利福尼亚理工学院选为教材。与本书相配套的教材《傅立叶分析导论》和《复分析》也已影印出版。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设
本书主要研究满足开集条件的自相似集的结构,从Hausdorff测度和上凸密度的计算与估计到其内部结构的理论研究,都作了比较全面的阐述.全书共分四章。章介绍基本定义、符号和基本命题;第2章讨论自相似集;第3章讨论上凸密度;第4章讨论自相似集的结构及相关问题.两个附录分别介绍了集合论、点集拓扑和测度论的基础知识。 本书可作为高等院校分形几何方向研究生、教师的教学用书,也可供相关方向科研人员和工程技术人员阅读参考。
《实分析》(英文版第3版)是一本的教材,主要分三部分:部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。《实分析》(英文版第3版)的题材是数学教学的共同基础,包含许多数学家的研究成果。
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。 本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮助
本书是一本内容十分翔实的实分析教材。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含 Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理, Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。 本书内容由浅入深。读者具有扎实的数学分析知识基础便可学习本书,学完本书的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
本书通过深入分析现有复杂决策问题的特征,在检索大量外资料,跟踪国际前沿技术的基础上,应用多学科交叉技术,将粗糙集理论引入经典的多属性决策方法中,并将管理学、人工智能、信息科学等知识相融合。在系统观点指导下,针对经典多属性决策方法中存在的严格假设问题,重点研究了粗糙集属性约简理论、粗集分类、奇异粗集等理论在经典的多属性决策理论与方法,最后经过模拟、试验和算例验证了该方的有效性,具有重要的理论意义和应用价值。本书可作为高等院校运筹学、管理科学、信息科学和系统工程专业的研究生教材,也可作为相关领域研究人员、工程技术人员、管理干部、教师和学者的参考书。
《同调论(第2版)》是一部代数拓扑领域的入门级书籍,特别强调同调理论基础和应用。具备abelian群和点集拓扑的基本知识完全读懂这《同调论(第2版)》。章既讲述奇异同调的本质,又介绍一些重要的应用。这样,学生可以很好的抓住材料的本质。紧接着讲述了接着空间、有限cw复杂度、eilenberg-steenrod定理、上同调积、流形、庞加莱对偶和不动点理论。通书运用大量的例子和图表,让表述尽可能的清楚。以基本概念为核心,一些的案例尽可能避免。《同调论(第2版)》最终目标是作为本科生教程或者自学教程。在第二版中进行了大量的扩展,增加了新的一章,包括覆盖定理,以及许多练习。理论方法再次证明了如何运用提出问题的方式近而产生基础群及其性质。目次:奇异同调理论;映射的接着空间;eilenberg-steenrod定理;覆盖定理;乘积;流形和庞加莱对偶性;不动点
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设计,