岩性油气藏的描述是勘探地震学的重要目标。小尺度地质体的构造成像、振幅保真的成像、反射系数与弹性参数的估计是勘探地震学中的核心问题。 通过《数据域波动方程层析速度反演方法研究/同济博士论丛》给出的透射波和反射波层析成像方法,可以建立较为准确的宏观背景速度。在此基础之上,利用*小二乘偏移理论,可以估计高波数的模型扰动。 《数据域波动方程层析速度反演方法研究/同济博士论丛》可供高等院校、科研院所相关领域的教师、科研人员、研究生及高年级本科生使用。
Elias M.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。本书已被哈佛大学和加利福尼亚理工学院选为教材。
本书是关于函数方程的解法、应用以及一些理论问题的专门著作。全书共6章,章介绍函数方程的有关概念和分类;第二章较为系统地介绍了函数方程的一些常见的求解方法;第三章给出三类具有特殊结构的函数方程的处理技巧;第四章主要讨论几类函数方程解的性质,包括解的存在性、稳定性等,并且介绍了巴拿赫空间中的函数方程;第五章、第六章是函数方程的各种应用,内容涉及许多领域。本书内容丰富翔实、说明深入浅出,并收集了大量历届、国际数学奥林匹克试题。本书可供高等院校数学教师、数学工作者和科技人员参考,对广大中学数学教师和参加数学竞赛的中学生也有的参考价值。
本书主要介绍图像偏微分方程的数值解法。介绍了轮廓线匹配算法、图像匹配算法和基于扩散方程的保边界降噪声算法。最后还介绍了近年发展较快的水平集法。本书解说精辟、推理严密、叙述简洁。 本书可供大专院校图像处理和模式识别专业师生作教材使用,也可供相关专业人士在科研中作参考。
本书是引进的影印版。“苏联数学进展系列”由不同数学领域的一名或多名资深专家作为主编,内容包含来自俄罗斯的世界很好数学家的论文.此系列书籍在21卷之后作为“美国数学协会译丛2”的子系列出版,后更名为“苏
The core chapters of this volume provide a complete course on metric, normed, and Hilbert spaces, and include many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. This makes a versatile text also suited for courses on real analysis, metric spaces, abstract analysis, and modern analysis. The book begins with a comprehensive chapter providing a fast-paced course on real analysis, and is followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as an introduction for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences,
本书共十六章.内容比较独立的是第一章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮助读者解
赵爱民和李美丽等编著的《微分方程基本理论》是在作者多年主讲研究生“微分方程基本理论”课程讲稿的基础上整理而成的。主要内容包括绪论(解的存在性、性及对初值与参数的光滑依赖性)、边值问题和Sturm比较理论、稳定性理论基础、定性理论基础、平面分支理论初步和算子半群与发展方程理论基础等,绝大部分章节都配有适量且难易兼顾的习题。本书以现代数学观点介绍微分方程的经典理论,同时简洁介绍了分支理论和发展方程的新方法和新进展。《微分方程基本理论》可作为高等院校数学专业高年级本科生和研究生的常微分方程现代理论专业课程的和教师的参考书,也可供相关专业的科研人员参考。
Thisbookisanabridgedversionofourtwo-volumeopusConvexAnalysisandMinimizationAlgorithms[18],aboutwhichwehavereceivedverypositivefeedbackfromusers,readers,lecturerseversinceitwaspublished-bySpringer-Verlagin1993.Itspedagogicalqualitieswereparticularlyappreciated,inthecombinationwitharatheradvancedtechnicalmaterial.
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。
《准晶断裂力学的复变函数方法》主要介绍准晶弹性与断裂理论中的复变函数方法。将准晶平面弹性和断裂问题转化为偏微分方程边值问题,采用复变函数方法研究复杂缺陷及缺陷相互作用等问题,获得了应力和位移的解析解,建立了相应的断裂判据,揭示了相位子对准晶材料力学行为的影响,为准晶材料的潜在应用奠定了良好的理论基础。《准晶断裂力学的复变函数方法》发展了经典弹性理论中的Muskhelishvili方法、Lekhnitskii求解各向异性体弹性力学的复变函数方法及Stroh方法,大部分内容是作者多年来的科研成果。《准晶断裂力学的复变函数方法》可作为应用数学专业和力学专业的高年级本科生和研究生的选修课教材,也可供相关领域工作的教师和研究人员参考使用。