《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、*模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、 函数和b函数、椭圆函数、cauchy型积分。上列*后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
本书系统介绍了复变函数的基本理论,包括复数的运算、复变函数的概念、解析函数的概念、解析函数的柯西积分理论、魏尔斯特拉斯级数理论、黎曼共形映射理论以及解析函数空间的有趣介绍等,体现了基本的复分析思想方法,适合于从事国际热门的解析函数空间上函数理论研究和算子理论研究的研究生在本科阶段的基本素养的培养。由于函数空间理论密切联系于工科电子通信类学科的信息处理与信号处理研究,故而也适合于电子通信类学科的面上公共课“复变函数”课程的教学。
本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
本书内容包括复变函数和积分变换两部分及与复变函数和积分变换有关的数学实验。复变函数部分内容有:复数与复变函数及其应用,解析函数及其应用,复变函数的积分及其应用,复级数及其应用,留数及其应用 积分变换部分内容有:傅里叶积分变换及其应用、拉普拉斯变换及其应用和Z变换及其应用。本书每章都有专门的一节介绍该章知识在实际问题中的应用,向读者传授一套完整地、科学地解决实际问题的方法,使读者初步掌握用工程数学解决实际问题的能力;本书加入了用数学软件MATLAB做数学实验的内容,通过计算机模拟计算,加深读者对所学内容的理解,同时给出了用计算机处理实际问题的算例和程序 让读者初步掌握用MATLAB解决实际问题的方法,从而培养读者数学应用能力和科学计算能力。本书例题丰富,论证严谨,易教易学 每章后有主要内容简要
本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。 本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。 本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》试图在高中数学的基础上,把初等数论、高等代数中的一些重要概念与理论串在一起详加论述。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》分为六个部分,从 多项式方程的求解与数系的扩张 、 整数的一些基本概念、定理与理论 、 数域、扩域与代数扩域的一些基本理论 、 多项式的一些基本概念、定理与理论 、 阿贝尔引理、阿贝尔不可约定理以及一些重要的扩域 、 多项式方程的根式求解、克罗内克定理与鲁菲尼 阿贝尔定理 逐步展开,尽可能地用通俗易懂的方式细说 不可能性定理 的种种方面。 《从求解多项式方程到阿贝尔不可能性定理 细说五次方程无求根公式》可供高中学生、理工科大学生、大中学校数学教师以及广大的数学爱好者在学习与教学解多项式方
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
本书介绍了复变函数的一些基础知识,主要包括复数与复变函数、解析函数与保形变换、复积分、级数、残数与辐角原理、解析开拓、正规族与Riemann映射定理、调和函数。
《同调论(第2版)》是一部代数拓扑领域的入门级书籍,特别强调同调理论基础和应用。具备abelian群和点集拓扑的基本知识完全读懂这《同调论(第2版)》。章既讲述奇异同调的本质,又介绍一些重要的应用。这样,学生可以很好的抓住材料的本质。紧接着讲述了接着空间、有限cw复杂度、eilenberg-steenrod定理、上同调积、流形、庞加莱对偶和不动点理论。通书运用大量的例子和图表,让表述尽可能的清楚。以基本概念为核心,一些*的案例尽可能避免。《同调论(第2版)》终目标是作为本科生教程或者自学教程。在第二版中进行了大量的扩展,增加了新的一章,包括覆盖定理,以及许多练习。理论方法再次证明了如何运用提出问题的方式近而产生基础群及其性质。目次:奇异同调理论;映射的接着空间;eilenberg-steenrod定理;覆盖定理;乘积;流形和庞加莱对偶性;不
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
本书是普通高等工科院校基础课规划教材之一,内容包括高等教育工科各专业所需要的复变函数和积分变换的基础知识。主要有复数与复变函数、解析函数、复变函数的积分、级数、留数、保角映射、傅里叶变换和拉普拉斯变换等。每章末附有小结和自测题,以便于读者自学时能够抓住重点和检查自己对本章学习的基本情况。书末附有习题答案和参考书目。 本书在编写过程中力求做到条理清楚、重点突出,注重解题方法的训练和思维能力的培养。本书可以作为高等教育工科各专业该课程的教材,亦可作为其他专业学习这门课程的教学参考书。本书使用学时建议为48~64学时。
本书从实变函数论的发展简史出发,深入浅出地阐述了实变函数论的基本理论、基本问题和基本方法。本书共分为六章,内容包括: 实变函数论发展简史、集合与点集、可测集、可测函数、勒贝格积分理论和勒贝格意义下的微