《流形上的层(英文)》指出层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。我们参考了国内外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger主编的《StandardMathematicalTablelandFormulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《TableofIntegrals,Series,andProducts》等,并广泛地征求了国内自然科学和工程技
《微分形式:理论与练习(英文版)》主要包括DifferentialFormsinRn,Ⅰ、DifferentialFormsinRn,Ⅱ、Push—forwardsandPull—backsinRn、SmoothManifolds、VectorBundlesandtheGlobalPointofView等内容。
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。我们参考了国内外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger主编的《StandardMathematicalTablelandFormulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《TableofIntegrals,Series,andProducts》等,并广泛地征求了国内自然科学和工程技
本书旨在介绍非线性微分方程研究的主要内容、典型方法和成果,其中包括作者近年的一些研究工作。本书系统地阐述了非线性常微分方程的基本理论、几何理论、稳定性理论、振动理论与分支理论等,还分别介绍了非线性泛函微分方程及非线性脉冲微分方程的相应理论。本书致力于核心概念的引入、基本定理的阐述、思想方法的揭示,以及非线性微分方程在现代科技领域中的应用。本书可作为高等院校数学系、应用数学系及控制、管理、工程、医学等专业的大学生、研究生的教材或参考书,也可供相关教师及科研人员参考。
Thefirsteditionwasintendedtobeasynthesisofreformandtraditionalapproachestocalculusinstruction。InthissecondeditionIcontinuetofollowthatpathbyempha-sizingconceptualunderstandingthroughvisual,numerical,andalgebraicapproaches。Theprincipalwayinwhichthisbookdiffersfrommymoretraditionalcalculustextbooksisthatitismorestreamlined。Forinstance,thereisnopletechapterontechniquesofintegration;Idon'tproveasmanytheorems(seethediscussiononrigoronpage);andthematerialontranscendentalfunctionsandonparametricequationsisinterwoventhroughoutthebookinsteadofbeingtreatedinseparatechapters。Instruc-torswhopreferfullercoverageoftraditionalcalculustopicsshouldlookatmybooksCalculus,FourthEditionandCalculus:EarlyTranscendentals,FourthEdition。ChangesintheSecondEdition~Thedatainexamplesandexerciseshavebeenupdatedtobemoretimely。~Severalnewexampleshavebeenadded。Forinstance,IaddedthenewExample1inSection5.4(page381)becausestudentshaveatoughtimegraspingtheideaofafunctiondefinedbyanintegralwithavariablelimitofintegratio
Andalloftheaboveisabasisformodeling.Modelingiswhatbringsthesubjecttolifeandmakestheideasrealforthestudents:Differentialequationscanmodelreal-lifequestions,andcomputercalculationsandgraphicscanthenprovidereal-lifeanswers.Thesymbiosisofthesyntheticandthecalculationalprovidesaricheducationalexperienceforstudents,anditpreparesthemformoreconcrete,appliedworkinfuturecourses.ThenewAnatomyofanApplicationsectionsinthiseditionshowcasesomerichapplicationsfromengineering,physics,andappliedscience.
本书用简练的文字,介绍了70位微积分的创立者及其先驱的简要经历、学术成就、治学态度、治学方法,概括性地论述了微积分的萌芽、创建、发展过程,其中还包含了一些科学家的名言和趣闻轶事。本书可以作为学习数学史的选讲,也是“高等数学”课程的一本教学参考书,既可供各类高等学校师生参考,又可供广大数学爱好者阅读。
本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分)”中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似”,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
这是一部译自俄文的享誉世界的大型英文数学工具书。经过半个世纪的多次补充和修订,它已成为数学家、物理学家和工程技术人员常用的专家工具书。本书收集了1万2千余条从初等函数到特殊函数的积分公式、级数和公式及乘积的数学用表。本书是第7版,本版在第6版的基础上做了修订,并附有一张含全书所有内容的光盘。目次:初等函数;初等函数的不定积分;初等函数的定积分;特殊函数的不定积分;特殊函数的定积分;特殊函数;矢量场理论;代数不等式;积分不等式;矩阵及有关结果;行列式;范数;常微分方程。
《现代数学译丛:微分方程的对称与积分方法》系统地介绍了量纲分析、Lie无穷小变换以及在常微分方程(组)和偏微分方程(组)中的应用,全书共分四章,章介绍了量纲分析、有关的重要原理及其在偏微分方程不变解中的应用,第2章发展了Lie无穷小变换和Lie代数,给出了一些基本定理和性质,另外,详细给出了无穷小变换的高阶展开公式,第3章主要讨论Lie对称在各种常微分方程(组)中的应用,包括一阶、二阶和更高阶的方程以及常微分方程的初值问题等,另外,还讨论了接触对称、高阶对称和伴随对称,第4章讨论Lie对称在各类偏微分方程(组)中的应用,每节后附有大量经典的例子,供读者进一步熟练掌握Lie对称及其拓展类型的使用方法,详略得当,易于读者阅读。《现代数学译丛:微分方程的对称与积分方法》可作为高等院校数学、物理、力学、生物学