本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
这本《常用积分表》是编者在参考外众多数学手册和积分表的基础上,选取最基本、最常用的积分公式编纂而成的,它适合大学生们使用,也可供教学和研究人员、工程技术人员参考。 本书包含最常用的初等函数和特殊函数的不定积分与定积分公式2552个,另外还有203个积分变换公式。积分公式中遇到的所有函数(包括被积函数和积分后的函数)的定义和基本性质都可以在录中查到。
This revision of the 1983 second edition of"Elliptic Partial Differential Equations of Second Order" corresponds to the Russian edition, published in 1989, in which we essentially updated the previous version to 1984. The additional text relates to the boundary H61der derivative estimates of Nikolai Krylov, which provided a fundamental ponent of the further development of the classical theory of elliptic (and parabolic), fully nonlinear equations in higher dimensions. In our presentation we adapted a simplification of Krylov's approach due to Luis Caffarelli.
本书打破模式化和形式化的编书体系,在逻辑化渐进式的编书理念指引下,对当今教材的结构进行了全面的革新,以兴趣为主导、以逻辑为基础,让大家在轻松学习微积分的同时深刻理解其本质,掌握其基本方法。 本书从古代“割圆术”的极限讲起,依照历史发展的时间顺序和学科发展的逻辑顺序全面解读微积分。从而揭示出微积分的本质。讲解微积分的基本知识和方法,然后揭示出“无穷小”这个概念的重要性。在此基础上。深入讲解高等微积分的知识,如傅立叶级数、椭圆积分和场论等。 微积分是当今大学一年级学生几乎必修的基础课程,但是本书起点低。具有科普的性质,适合具有高中学历者自学:又因为本书有教材的特点。尽量做到对知识的全面和深入讲解,所以可以作为大学生的课外补充材料,尤其是针对那些对微积
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
《时滞微分方程的分支理论及应用》简要介绍时滞微分方程的基本理论并重点阐述分支问题研究的主要方法。在基本理论中,介绍了包括初值问题解的存在性、整体解的存在性、线性自治系统谱分解理论和线性稳定性理论、半动力系统和稳定性理论等;围绕分支问题的研究,主要介绍了指数多项式的零点分布的分析方法、建立在中心流形上的局部Hopf分支理论、以等变拓扑度理论为基础的全局Hopf分支理论、高余维分支的分析方法等。《时滞微分方程的分支理论及应用》将若干典型实例与研究成果相结合介绍了上述理论的具体运用,读者可以从中学会和把握非线性动力学研究的基本方法。 《时滞微分方程的分支理论及应用》可供从事微分方程与动力系统研究的学者和科研工作者使用,也可作为研究生的教材和参考书。
《高等学校教材(8):应用泛函分析》是为高等理工科院校非数学类专业的高年级大学生、研究生和博士生编写的应用泛函分析教材,全书共分六章。前四章系统地介绍了度量空间、赋范线性空间和内积空间的基本概念和基础理论;后两章简要介绍了非线性分析、广义函数和Sobolev空间的基本理论。 《高等学校教材(8):应用泛函分析》除作为研究生教材外,还可供需要泛函分析知识的科技人员阅读参考。
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
《高等学校教材(8):应用泛函分析》是为高等理工科院校非数学类专业的高年级大学生、研究生和博士生编写的应用泛函分析教材,全书共分六章。前四章系统地介绍了度量空间、赋范线性空间和内积空间的基本概念和基础理论;后两章简要介绍了非线性分析、广义函数和Sobolev空间的基本理论。 《高等学校教材(8):应用泛函分析》除作为研究生教材外,还可供需要泛函分析知识的科技人员阅读参考。