本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
《常微分方程定性与稳定性方法》是为理工类专业的硕士研究生和高年级本科生的需要所编写的一《常微分方程定性与稳定性方法》.《常微分方程定性与稳定性方法》为第二版.主要包括定性理论、稳定性理论和分支理论三个部分.内容着眼于应用的需要取材精练,注意概念实质的揭示、定理思路的阐述、应用方法的介绍和实际例子的分析,并配合内容引入计算机软件.每章后附有习题供读者练习.
《偏微分方程的有效动力学(英文)》是国外数学著作原版系列中的一本。《偏微分方程的有效动力学(英文)》主要介绍几类重要的偏微分方程及其动力系统的动力学研究成果。《偏微分方程的有效动力学(英文)》系统地介绍了动力系统动力学的研究方法和作者近期的研究成果。
本著作由三部分组成,部分Heisenherg群上的不变微分算子的分析,内容包括Heisenberg群、无穷维酉表示、Kohn-Laplace算子的基本解、亚椭圆性、谱与特征值,第二部分拟齐性线性偏微分算子,内容包括拟齐性偏微分算子、Liouville定理、解析亚椭圆性、多项式解空间、奇点可去性。第三部分Greiner算子的基本解和实解析性。 本著作适用于学习和研究偏微分方程理论的研究生、高校教师和相关领域的数学工作者。
本书是学习《微分几何(第四版)》(梅向明、黄敬之编)的配套参考书。书中部分是学习指导及习题,指出各章节的理论要点,并通过例题提高读者对概念、定理的认知水平。第二部分是解题指导与答案,对各类习题给出了详尽的分析和规范的解题过程,以期提高读者的解题能力。 本书可供研读《微分几何(第四版)》的学生、教师,以及自学本课程的读者参考。
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历 的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物, 是数学爱好者的佳肴。