《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
《数林外传系列:向量复数与质点》主要论述用向量解决常见几何问题的方法,是基于向量相加的首尾衔接规则的回路法。全书共7章,从被人忽视的向量回路人手,介绍向量形式的定比分点公式和四边形中位线公式及其应用,对垂直问题、圆问题、三角形五心问题等作了专题研究;同时探讨了与向量法密切相关的复数法和质点法;对于不同解法之间的优劣,列举大量实例进行比较研究。 《数林外传系列:向量复数与质点》是在《绕来绕去的向量法》基础上进一步研究的成果,可供中学和大学的数学教师及理工科教师、中学生和大学生、数学爱好者以及数学教育研究者参考。
《几何原本(建立空间秩序 久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并 次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年 个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
商品参数 几何原本 定价 58.00 出版社 重庆出版社 版次 3 出版时间 2014年08月 开本 16开 作者 欧几里得 装帧 平装 页数 631 字数 700000 ISBN编码 9787229071578 内容介绍 《几何原本》共有十三卷,其中第壹卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;zui后讲述立体几何的内容。从这些内容可以
《灾害与社会管理专家论坛丛书:防灾减灾与社会管理创新(2011)》是“灾害与社会管理专家论坛丛书”之一,包括:统筹规划有序推进加快社会保障制度建设;当前加强和创新社会管理面临的十大问题;关于未来国家综合防灾减灾战略理念、原则与战略目标的断想;社会管理在创新中追求卓越;青海东部自然灾害及发展态势;我国防汛抗旱减灾与管理;直面灾害——医学救援的时代特征与历史重任;国家综合防灾减灾的战略选择与基本思路等内容。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问
本书的内容是初等的,以平面几何中的不等式为主,全书共分为8章,前面用的是几何方法,后面则要用到一些代数、三角的知识, 一章是立体几何中的不等式,各章之间虽有联系,但是并没有的依赖关系,因此读者可以根据自己的需要,选读某几章或某些例题。 本书有习题100多个,分散在各章,有的习题是该章内容的补充,有的是定理或例题的应用,也有若干难度稍大、可供讨论的问题,习题均有扼要的解答或提示。
《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《高等学校工科电子类规划教材:离散数学(第3版)》介绍计算机专业最需要的离散数学基础知识,共8章,包括数理逻辑、集合、二元关系、函数、无限集合、代数、格与布尔代数、图论等,并含有较多的与电脑科学和工程有关的例题和习题。《高等学校工科电子类规划教材:离散数学(第3版)》适合於高等理工科院校电脑科学、工程和应用专业作教材,也可供教师、研究生、高年级学生和有关工程技术人员作参考书。
本书是一本黎曼几何的入门教材,内容包括:微分流形引论、张量分析、黎曼几何基础、测地线理论及子流形几何。本书对研究黎曼几何的三种表示法——不变形式法、活动标架法和自然坐标法——作了统一的处理,介绍了微分流形与黎曼几何中的各种基本概念和技巧,兼顾到经典理论和近代进展的内容,以使读者在学完本教程后能独立从事研究工作。修订版还增加了6个附录,以适应读者进一步的要求。 本书可作为综合性大学、师范院校数学系各专业高年级选修课教材及研究生教材,也可供数学和物理学工作者参考。