欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
本书以Hilbert空间中线性算子数值域以及相关问题为主线,对线性算子数值域基本性质以及应用进行阐述.本书的内容框架如下:第1章主要介绍Hilbert空间中线性算子数值域.第2章主要介绍Hilbert空间中有界线性算子数值半径.第3章主要介绍Hilbert空间中一些特殊算子的数值域.第4章主要介绍由Hilbert空间中线性算子数值域推广得到的一些特殊数值域,将Hilbert空间中线性算子数值域的研究提升到一个新的高度.第5章介绍Hilbert空间中线性算子的扩张理论,为Hilbert空间中线性算子数值域的应用提供平台.
在科学翻译 ,汉译《几何原本》(1607年)是一项杰出的成就。利玛窦与徐光启筚路蓝缕,以古文风韵,译拉丁原典,风格传神,令人心悦诚服,梁启超曾赞其为“字字金珠美玉”。《几何原本》的翻译也是历 欧洲与中国 文化冲撞的一个侧面,故其价值不 于数学史或科学史,在近代中西文化交流 亦具重要价值。 安国风博士的这本《欧几里得在中国》,着力把握晚明社会学术思潮变化的大背景,突出《几何原本》作为“异质”文化(如抽象性、演绎性和公理化)的特点,详细探讨了欧氏几何向中国传播的前因后果;同时,通过对古典文献的梳理引证,对相关人物、著作的评述与分析,揭示了明清之际中国传统数学思想的嬗变历程。
本书是《分形》的第2版,版在1995年8月由清华出版社出版。本书以自然界中普遍存在的非平衡非线性复杂系统中自发形成的各种时空有序状态(或结构)为研究对象,介绍了分形理论的基本概念、数学基础和研究方法,及其在凝聚态物理学、材料科学、化学、生物学、医学、地震学、经济学等学科中的应用。 本书内容丰富、生动形象,并附有适量的计算机模拟程序,可作为对非平衡非线性研究感兴趣的各学科研究工作者学习分形理论的入门书,也可作为本科生和研究生学习分形理论的和参考书。
《LINGO和Excel在数学建模中的应用》深入浅出地介绍了LINGO的基础知识、用LINGO语言描述现实问题的方法和用Excel处理数据的方法,重点是这两种软件在解决各种优化问题以及在数学建模中的应用,通过丰富的实例介绍了把实际问题转化为数学模型的方法,以及综合运用LINGO等软件来求解模型的手段和技巧。 《LINGO和Excel在数学建模中的应用》的主要内容包括LINGO的基本用法、LINGO在图论和网络模型中的应用、用LINGO求解非线性规划和多目标规划、LINGO与其他软件之间的数据传递、Excel在数学建模中的应用和LINGO在数学建模中的应用实例等。《LINGO和Excel在数学建模中的应用》可作为高等院校研究生、本科生和专科生的数学建模培训教材或参考书,也是从事数学建模教学和建模竞赛指导的教师、对数学建模有兴趣的科研人员有价值的参考书,还可以作为一本内容较全面的L