几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
《几何原本》是世界上 、 完整且流传 广的数学著作,也是欧几里得 有价值的传世著作。欧几里得在《几何原本》中系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。而《几何原本》也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
《趣味几何学》是俄罗斯科普作家别莱利曼百余部作品之一。《趣味几何学》不仅是为爱好数学的人而写的,也是为那些还没有发现数学上许多引人入胜的东西的读者写的。许多读者曾在学校里学过几何学,但并不习惯去注意在我们周围世界里各种事物常见的几何关系,不会把学到的几何学知识应用到实际方面去,不知道在生活中间遇到困难的时候、在郊游或露营的时候应用学到的几何学知识。作者把几何学从学校教室的围墙里、从科学的“围城”中,引到户外去,到树林里、到原野上、到河边、到路上,在那里摆脱教科书和函数表,无拘无束地来做几何作业,作用几何知识重新认识美丽的世界。
本书系统地介绍三维欧氏空间中的曲线与曲面论的基本概念和方法。通过引入刻画曲线、曲面形状的几何量,我们将讨论这些几何量对曲线、曲面形状的影响。由于这类几何量不依赖于局部参数化的选择,局部定义的几何量以自
thiook is an outgrowth of my introduction to differentiable manifolds (1962) and differential manifolds (1972). both i and my publishers felt it worth while to keep available a brief introduction to differential manifolds. the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. in differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.). one may also use differentiable structures on topological manifolds to determine the topological structure of the manifold (for example, a la smale [sm 67]). in differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a riemannian metric, ad lib.) and studies properties connected especially with these objects. formally, one may say that one studies properties invariant under the group of. dif
本书是《分形》的第2版,版在1995年8月由清华出版社出版。本书以自然界中普遍存在的非平衡非线性复杂系统中自发形成的各种时空有序状态(或结构)为研究对象,介绍了分形理论的基本概念、数学基础和研究方法,及其在凝聚态物理学、材料科学、化学、生物学、医学、地震学、经济学等学科中的应用。 本书内容丰富、生动形象,并附有适量的计算机模拟程序,可作为对非平衡非线性研究感兴趣的各学科研究工作者学习分形理论的入门书,也可作为本科生和研究生学习分形理论的和参考书。
本书使用向量的概念对高校工科“线性代数”的课程内容进行了较全面的几何分析。从向量的几何意义开始,分别讲述了向量组、向量空间、行列式、矩阵、线性方程组和二次型的几何意义或几何解释,其中不乏重要概念的物理意义的解释。这本书就像一串项梁,把上百个概念和定理的几何意义串在一起敬献给读者朋友。 本书文字多为作者原创,比如叉积的物理意义,克莱姆法则、雅可比矩阵、相似/合同矩阵、转置矩阵/对偶、矩阵乘积的行列式等系列概念的几何意义等,应用方面如使用矩阵分析的方法分析电子振荡器的工作原理等。 本书图文并茂,思路清晰、
本书以圆锥曲线的直观认识为起点,阐释了仿射变换、射影变换等射影几何的基础理论知识,论述上尽量做到既朴实直观又系统严谨,并注意数学思想和方法的渗透,是一本射影几何学的入门读物。
《废水厌氧处理与IC厌氧反应器》全面系统地介绍了厌氧生物处理技术原理和高效厌氧消化反应器设计理论.包括三部分内容:一是对有机废水厌氧处理的基本原理与方法进行较全面系统的介绍;二是对内循环(IC)反应器的设计原理与方法进行介绍与实例论证:三是对内循环(IC)反应器的调试运行与稳定性进行初步探讨。全书共分十章。《废水厌氧处理与IC厌氧反应器》适用于大专院校环境工程专业学生、设计院以及环保工程公司从事厌氧生物处理技术的技术人员阅读参考。
《化学原理选讲》选取了化学课程中常见的重难点予以深度解析,论述精辟独到,并且适当扩展延伸化学专业基础课“无机化学原理”课程的内容,以增进读者对相关知识的认识和掌握。《化学原理选讲》可作为高等院校化学专业低年级本科生学习无机化学的参考书,也可作为化学教师的备课参考书,还可作为化学奥林匹克参赛者的备赛指导书。