戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论
《有限元方法卷:基本原理(第5版)》为有限元方法系列专著的卷——基本原理,涵盖了有限元分析的一些基础领域,同时还涉足有限元分析的前沿内容。本卷共20章,内容广泛,既强调有限元的数学力学原理,又结合工程实际背景。该书的版完成于1967年,到现在已出版第5版,历时40余年,成为有限元领域的经典著作,已有几代从事计算力学的学者从该书中受益。本书可作为高年级本科生和研究生的课程学习参考书,也是从事有限元研究的科研人员和工程技术人员的重要学习文献。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
《几何背景下的数学物理方法》内容除包括传统的复变函数、数学物理方程、特殊函数和积分变换外,还概述了微积分中的数学思想,简单介绍了广义函数的入门知识。《几何背景下的数学物理方法》观点新颖,极具启发性,内容由浅入深,同时又能深入浅出。全书注重对数学概念的阐述、对知识的来龙去脉的交代,把数学思想方法和具体的数学知识融为一体,以此来不断提升读者对数学知识的认识和理解水平;尤为注重几何直观的引导作用,尽量以平面和函数空问为背景阐述全书内容,对数学物理方程的常用解法,诸如分离变量法和积分变换法等的原理都做出了几何解释。并且,从推广函数空间的坐标表示的角度引出广义函数的概念,实现了从函数概念到广义函数概念的自然过渡。全书为读者进一步学习泛函分析铺平了道路。 《几何背景下的数学物理方法》
《数学学习方法指导丛书:数学分析》较为系统地综述了数学分析的基本内容、方法、技巧。通过典型例子指出在学习、作业、考古中常见的错误及纠正的办法。全书重点放在钥匙方法、技巧上,提供一篆列新颖有效果的钥匙思路,全书配有大量的习题、历届考研试题,书末附有答案,也介绍一些较为深入的内容。
本书较系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐进展开,线性常微分方程的级数解法和积分解法等,在各章之末还有习题,习题中包含了一些有用的公式作为本书正文的补充。
《系统科学》一书在充分肯定钱学森先生在中国系统科学发展中的贡献的基础上,还对整个中国系统研究方面的成果作了一次汇总。 在系统科学理论研究领域,非常引人注目的是顾基发先生在钱