《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
本书是剑桥大学统计实验室的戴维 威廉姆斯教授在为剑桥大学三年级大学生所开设课程的讲义的基础上写成的 , 是一本基于测度论的方法来介绍概率论的严格理论的入门书。 该书的*特点与新颖之处是用了近三分之一的篇幅来介绍先进的鞅的理论与方法(这一点连作者本人也颇为自许); 此外,还有如从第 4 章 独立性 开始便引入 - 代数化的表达方式 , 将 - 代数视为总结、综述信息的一种自然的工具 , 这对于后面条件期望概念的一般化与鞅的理论的叙述都是至关重要的。 再如将某些定理的叙述、阐释与定理的证明分开进行(将定理的证明放在附录中) , 这样更便于读者自学。作者学养深厚、涉猎广博、文笔生动 , 书中内容涉及概率论的众多分支领域 , 信息量巨大 , 且不乏一些有趣并富于启发性的例子 , 相信读者阅后定能获益良多。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《贝叶斯统计学及其应用》系统地介绍了贝叶斯统计学的基础理论以及在一些领域中的应用。全书共16章,内容分为4个部分:部分,介绍贝叶斯统计学的发展和应用概况,包括第1章(绪论);第二部分,介绍贝叶斯统计学的基础理论,包括第2-6章;第三部分,介绍贝叶斯统计学在一些域中的应用,包括第7-15章;第四部分,介绍贝叶斯计算方法及有关软件,包括第16章。另外,《贝叶斯统计学及其应用》还有两个附录,附录A:贝叶斯学派开山鼻祖——托马斯·贝叶斯小传,附录B: WinBUGS软件及其基本使用介绍。《贝叶斯统计学及其应用》中的一些例题、应用案例,采用R软件,并给出了相应的代码。 《贝叶斯统计学及其应用》注重可读性,力求图文并茂;既有继承国内相关教材的传统部分,又有汲取国外相关教材中流行的直观、灵活的风格。在介绍贝叶斯
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是俄罗斯著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本习题集是作者在长期积累的基础上精心编写而成的,共收集了1500 余道习题(包括子题),它们与作者的《概率》(2004版)二卷本联系紧密,并按照同样的顺序编排。除了用来检查对二卷本中的概念、结论掌握情况的习题外,习题集中还包括需要较大创造性来解答的中等和高等难度的习题,以及作为二卷本内容补充的习题。大部分习题都附有提示。在附录中还解释了本书所用到的基本符号。并对与本书内容有关的概率论、组合论以及位势理论的基本概念作了简要的介绍。 本书适合概率统计、数学
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
内容提要本书以适应统计学教学与统计实践为宗旨,系统地阐述了统计的基本理论、基本知识和基本方法。本书系统性强,结构严谨、布局合理、统计理论与统计实践紧密结合;力求简明易懂,使读者易学易用;力求体现统计知识的整合性、综合性、系统性;力求体系和内容有所突破和创新。全书共15章,包括总论、统计计量、统计资料搜集、统计资料整理、统计比较分析、数据分布特征测度、时间数列分析、统计指数、概率与概率分布、抽样推断、假设检验、方差分析、相关与回归分析、平衡数列分析和空间数列分析等,基本上涵盖了统计学学科体系的主要构成要素。
非帕斯卡概率逻辑是美国逻辑学家乔纳森 柯恩 创立的、有别于帕斯卡概率逻辑的一种新型逻辑,该 逻辑系统的*大的特征是不满足帕斯卡公理系统的否 定互补性原理和乘法法则。沈振东*的《非帕斯卡概 率逻辑的哲学基础与应用研究》立足于三个研究视角 :一是在传统的归纳逻辑理论的演化序列中探寻该逻 辑系统的哲学基础的合理性;二是从可能世界语义学 角度对该种逻辑进行形式刻画,并建立逻辑系统;三 是该逻辑系统以相关变量等概念为工具尝试性地对帕 斯卡概率不解释的领域进行解释,或者对应用帕斯卡 概率而导致悖论性的结论进行消解。
本书内容按现行较为通行的该课程大学教材知识范围分章设练习题、习题解答两部分,练习题分为解答题、选择题与填空题三种题型(部分章节除外)。 习题编选力求由浅入深、典型,解答力求简洁,不刻意追求解答的完整。并精选在科学技术和生产上应用性较强的相关问题。 本书可作为高职高专学生和本科学生学习本课程之用,亦可作为教学参考之用。
本书是专为高等院校学生学习概率论与数理统计课程编写的教材,也可作为有关专业的参考书与从事概率论与数理统计相关工作的科研与工程技术人员的参考书。 本书分为上、下册,共10章,上册包括概率论的基本概念;*变量及其分布;多维*变量及其分布;*变量的数字特征;大数定律与中心极限定理及概率论的简单应用等知识。下册包括数理统计的基本概念;样本分布;参数估计;假设检验;线性统计推断以及常用的多元统计方法。 本书每章节末都配有大量的思考题、基本练习,综合练习与自测题,帮助读者循序渐进地牢固地掌握概率论与数理统计知识。
《论语读记》是对《论语》逐篇逐章逐句逐字进行注释、翻译、解读的学术著作。全书约23万字,每篇有 题解 ,概括大意。每章分为 原文 注释 译文 读记 四个部分。笔者自上个世纪80年代于大学课堂上学习《论语》以来,隔上几年又重温一次,每一次读《论语》都有新的认识和体会,真正是常读常新,断断续续形成了若干心得札记,近两年进行系统整理,经过三次较大的修改,遂成此书。坊间注译解读《论语》的书可谓汗牛充栋,但不少读本随意性太大甚至臆说乱解,把一部忧国忧民忧人类的伟大思想著作或弄成鸡汤读物,或弄成管理秘籍,或弄成谋略法则,这类的解读可以说离题太远。笔者试图从原文出发,尽可能准确地读懂《论语》原意,并从人生和现实出发,探寻《论语》对人生对现实的意义。为此,笔者在选择参考书时坚决舍弃某些讲坛明星、畅销作
《蜗牛科学系列》丛书从基础入手,遵循循序渐进的原则,深入浅出地解说基本的科学原理和*的科学知识,注重学习方法与兴趣的培养。带着身边的问题走进它,不用死记定理,也不用硬背公式,不再乏味,不再费解,轻松步入神奇有趣、绚丽多姿的科学世界。本书是其中之一。 本书是写给觉得“我知道概率统计这个词,就是和现实事物对不上,不理解”,或常常想“我要学习概率统计,可是从哪里开始学呢”的读者。我们的目标是把概率的基本知识解释得通俗易懂,并且尽量具体说明。其中所举事例也尽量争取从我们周围的事情和日常的生活中选取。数学看起来复杂,归根究底,审一个“简单事实的积累”。概率统计也是如此。希望本书能够帮助读者理解概率统计,或者使各位读者燃起学习的兴趣。
作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“*数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
本书是高等院校本科生数学公共基础课程“概率论与数理统计”的学习参考书,全书根据教材章节顺序共分九章,每章按五部分撰写,分别为内容精要(知识归纳)、典型例题、习题详解、自测题及自测题答案等内容.内容精要是对内容和方法进行归纳总结,方便学生自学,对概率论与数理统计的知识体系有一个详细认识,并为下一步的专业学习奠定良好基础;典型例题是把基本理论、基本方法、解题技巧等方面的教学要求融于例题之中,从而达到举一反三、触类旁通的效果;习题详解给出了较详细的分析与解答,有助于学生在课后自主学习;自测题大多选自于各章相关的历年考试典型试题,并给出了相应的参考答案,供学生复习和自测使用.
韩明编著的这本《概率论与数理统计教程》共分十章,前五章是概率论部分,内容包括*事件及其概率、*变量及其分布、多维*变量及其分布、*变量的数字特征及特征函数与极限定理;后五章是数理统计部分,内容包括数理统计的基本概念、参数估计、假设检验、方差分析及回归分析。 本书既有继承国内相关教材传统的部分,又有汲取国外相关教材中流行的直观、灵活的风格,本书图文并茂,注重可读性,着重讲解基本概念、统计思想,强调理论与方法的应用,并把数学实验与数学建模的思想方法融入教材中。 《概率论与数理统计教程》可供高等院校数学类、统计类等有关专业作为本科生教材使用,也可供相关专业的高年级本科生及研究生作为教材使用,还可供相关专业研究者和广大自学者参考。