由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
无
本书是基于作者在香港大学和南方科技大学10余年数理统计教学的经验,同时结合国内其他高校学生和教师的具体情况精心撰写而成的。本书主要内容包括:概率和分布、抽样分布、点估计、区间估计、假设检验、斜零分布的临界区域和值等。本书通过组合传统教材和课堂PPT各自的优点,设置了经纬两条主线,运用块状结构呈现知识点,使得每个知识点自我包含,并采用彩色印刷,方便教与学。另外在介绍重要概念时,注重启发,逻辑顺畅,条理清楚。
本书涉及面极广,不仅讨论了概率论在离散空间中的诸多课题,而且涉及了概率论在物理学、化学、生物学(特别是遗传学)、博弈论及经济学等方面的应用。书中主要内容有:样本空间及其上的概率计算,独立随机变量之和的随机起伏,事件的组合及条件概率,离散随机变量及其数字特征,大数定律,离散的马尔可夫过程及其各种重要特征,更新理论等。除正文外,本书还附有数百道习题及答案。本书适合高等院校广大理工科学生泛读及概率论相关研究人员精读。
本书用测度论的观点论述概率论的基本概念,如概率、随机变量与分布函数、数学期望与条件数学期望和中心极限定理等。本书特点是把测度论的基本内容与概率论的基本内容结合在一起讲述,论述严谨,条理清楚,便于自学,凡学过概率论基础课的读者都能阅读本书。每节后面附有习题,以便加深理解书中的内容。
本书比较全面系统地介绍蒙特卡罗方法的理论和应用.全书15章,前8章是蒙特卡罗方法的理论部分,包括蒙特卡罗方法简史、随机数产生和检验、概率分布抽样方法、马尔可夫链蒙特卡罗方法、基本蒙特卡罗方法、降低方差基本方法、拟蒙特卡罗方法和序贯蒙特卡罗方法.后7章是蒙特卡罗方法的应用部分,包括确定性问题、粒子输运、稀薄气体动力学、自然科学基础、数理统计学和可靠性、金融经济学及科学实验模拟.
本书介绍近些年来关于马尔可夫链的统计推断的一些研究新结果:可逆马尔可夫链和不可逆平稳D-马尔可夫链统计计算理论,使用的方法是我们建立的马尔可夫链反演法。第1章介绍本书需要的一些预备知识。第2章介绍马尔可夫链的击中分布和禁忌速率,主要是击中分布的微分性质、矩性质及对称函数性质有关的约束方程,以及马尔可夫链反演法。第3章和第4章分别研究连续时间和离散时间有限状态可逆马尔可夫链的统计计算理论,总结性地给出了关于充分性、必要性和充分必要性的主要结论。第5章以连续时间有限状态空间为例研究不可逆平稳D-马尔可夫链的统计计算理论。第6章讲述各种类型马尔可夫链的统计计算算法、数值例子,以及在计算神经科学、经济领域等的实际应用。第7章从统计的角度介绍基本的模型选择方法。
本书总结了各种广义的最小二乘问题的理论与计算的最新成果.主要包括最小二乘问题、总体最小二乘问题、等式约束最小二乘问题以及刚性加权最小二乘问题等的理论与科学计算问题.由于四元数矩阵及四元数矩阵的计算在彩色图像处理、量子物理和量子化学等领域有广泛应用,在第二版中添加了四元数矩阵及四元数矩阵的实保结构算法等最新内容。 由于各种广义奇异值分解在解决矩阵论和数值代数问题中有着重要的作用,书中也较详细地介绍了广义的奇异值分解,并应用于解决若干矩阵论和数值代数问题.本书需要的预备知识为数值代数、矩阵论和四元数矩阵分析。
《三角范畴与导出范畴》前5章讲述三角范畴和导出范畴的基本理论;第6~11章讨论了Frobenius范畴的稳定范畴、Gorenstein同调代数、奇点范畴、Auslander-Reiten三角与Serre对偶、三角范畴的t-结构与粘合等专题。附录提供了《三角范畴与导出范畴》所要用到的范畴论方面的概念和结论。每章均配有习题并包含提示。《三角范畴与导出范畴》强调三角范畴与Abel范畴之间的比较和转化研究。
祁连山是河西走廊绿洲地区和柴达木盆地东缘绿洲地区的水源地,其储水与供水状况直接关系到下游绿洲地区社会经济的发展。《祁连山水塔变化及其影响》以祁连山水塔变化及其影响科学考察分队所获得的大量手观测和调查资料为基础,结合前人的相关研究成果、遥感资料,进行系统综合集成分析,对祁连山水塔的组成要素、功能、变化及其影响进行系统论述。《祁连山水塔变化及其影响》共7章,主要内容包括科考的背景与意义、主要内容与目标,祁连山水塔的组成要素,近期变化及其驱动因素和对水资源、生态环境的影响。《祁连山水塔变化及其影响》还预测了祁连山水塔未来变化及其影响。
《流行病学中的数学模型》是Fred等三个美国流行病学模型专家、数学家合著的Mathematical Models iEpidemiology一书的中译本。内容分流行病学的基本概念(包括各种类型的仓室模型、地方病模型、流行病模型、异质混合模型、媒介传播的疾病模型),特殊疾病的模型(包括结核病模型、病毒/(HIV/AIDS)模型、流感模型、埃博拉模型、疟疾模型、登革热模型与寨卡病毒模型),进一步概念(包括年龄结构和空间结构的疾病传播模型等)和展望未来四个部分,另加三个附录。
本书是数理统计方面的经典教材,从数理统计学的初级基本概念及原理开始,详细讲解概率与分布、多元分布、特殊分布、统计推断基础、极大似然法等内容,并且涵盖一些 主题,如一致性与极限分布、充分性、 假设检验、正态模型的推断、非参数与稳健统计、贝叶斯统计等.此外,为了帮助读者 好地理解数理统计和巩固所学知识,书中还提供了一些重要的背景材料、大量实例和习题.本书可以作为高等院校数理统计相关课程的教材,也可供相关专业人员参考使用.