本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
《数理统计及其在数学建模中的实践(使用MATLAB)》从数理统计分析在数学建模中的应用以及在MATLAB中的实现出发,介绍概率论与数理统计分析的基本概念、典型应用及使用MATLAB进行实际建模分析的基本方法和应用。本书将概率论与数理统计的建模方法与MATLAB典型应用融为一体,既从理论上介绍了数理统计基础的基本原理、数理统计知识在数学建模中的使用方法,又详细讲解了该部分知识在MATLAB环境下的实现方法,并给出了大量的典型实例分析。 《数理统计及其在数学建模中的实践(使用MATLAB)》主要内容包括:利用MATLAB制作统计报告或报表、数据处理与统计作图、统计估计、参数检验、方差分析、回归分析与数据拟合、马尔可夫链、数理统计建模实验设计等。书中从数学建模的角度出发描述了通过数理统计数学建模的一般方法步骤,既有理论推导又详
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国优秀畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分方程数值解法和矩阵特征值及特征向量的计算。书末附一份模拟试卷及其参考答案。 《计算方法与实习学习指导与习题解析(第2版)》可作为理工科大学生学习计算方法课程的参考书。
本书是解放军信息工程大学信息工程学院参加全国大学生数学建模竞赛获奖论文的第二卷,主要是从该院2006~2011年获全国一等奖的论文中精选出的18篇优秀论文编辑整理而成,同时收录了本书主编作为命题人撰写的两篇评述文章,即共收录20篇论文,截至2011年解放军信息工程大学信息工程学院在全国大学生数学建模竞赛中获得一等奖40多项,二等奖50多项,其中第一卷收录19篇,本卷收录的论文都是从近6年中获奖论文中精选出来的有创造性和代表性的优秀论文。每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建市与求解、模型的分析与检验、模型的评价与改进方向等内容,基本保持了参赛论文的原貌,在每篇论文后面编者都给出了简要的点评。最后,在附录中给出了2006~2011年全国大学生数学建模竞
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
本教材充分考虑到运筹学的学科特点,问题都来源于当今信息时代的实际案例,并上升到理性,再回到实践中去,解决实践中的问题。积极尝试运用新的思维和科研成果改进教材内容。根据运筹学课程在相关专业能力体系中的作用,希望本教材能够在知识维度提供优化理论和方法,在能力维度能够培养学生解决实际优化问题的能力、推理和分析能力、定量分析问题解决问题的能力、系统分析问题的能力;在态度维度能够更理性的认识问题,学会用数学的语言来描述一个实际问题。本书适合作为普通高等院校开设“运筹学”课程的教材或参考书。
《运筹学(第2版)》是介绍运筹学的一些重要分支的基本理论和方法的基础教材,注重培养学生运用运筹学的方法分析和解决实际问题的能力,内容包括线性规划、动态规划、网络规划、决策与对策、存储问题、实验指导与运算软件6个部分,共10章。书中除了有大量例题外,还附有一定数量的习题。 《运筹学(第2版)》前9章增加了应用案例、关键词及其英文对照两部分,补充了习题内容;第10章介绍了常用的matlab命令及相关函数和表达方法,winqsb软件、lingo软件及其使用方法,为满足不同实验环境提供了参考。 《运筹学(第2版)》侧重于实际问题的建模和计算,可作为高等院校理工科运筹学课程教材,也可供从事实际工作的工程技术人员以及管理人员、企业家、商业经营者等学习参考。
该教材主要是针对全国工程硕士专业学位研究生运筹学课程教学所编写,主要内容包括: 绪论、线性规划及其应用、运输规划及其应用、整数规划及其应用、目标规划及其应用、非线性规划及其应用、存储论及其应用、图论与网络优化及其应用、排队论及其应用、对策论及其应用和决策论及其应用等章节.其中每一章都包括问题的工程背景、问题的数学原理、问题的LINGO求解方法、应用案例分析和应用案例练习等内容.书中的所有案例和练习全部是来自各工程领域的实际问题,共包含50多个应用案例和100多个应用练习问题.后给出了LINGO软件使用方法简介. 本书适合作为相关各工程领域的工程硕士专业学位研究生运筹学课程教材,也适合工科各专业的大学本科生和非运筹学专业研究生的运筹学课程教学使用或作为参考教材,也可供从事相关研究工作的工程技术
《数学建模入门--125个有趣的经济管理问题》由杨桂元、李天胜编著,本书是数学在实际问题特别是在经济、管理问题中的应用实例,根据实际问题涉及的数学模型,编写了125个与大学数学教学内容相配套的数学模型应用实例,每一篇内容独立成文,以经济管理和日常生活中的问题为切入点,然后用数学方法求解,有前提有结论,并且对该篇应用的数学方法——理论依据和应用推广进行评注。全书分为4篇,分别是:第1篇微积分模型;第2篇线性代数模型;第3篇概率论模型;第4篇数理统计模。 《数学建模入门--125个有趣的经济管理问题》可作为高等院校学生学习数学建模的辅导用书,也可作为相关领域学者研究经济、管理问题时的参考读物。
在现代管理的理论与方法中,既有定性分析也有定量分析。随着现代管理技术与方法的发展,现实情形越来越要求管理者掌握一定的定量分析方法,管理科学就是用定量方法研究管理问题的一门科学。本书系统地介绍了运筹学中的主要方法和模型,重点陈述了管理科学中应用*为广泛的决策分析、网络分析、存储论、排队论、可靠论、线性规划、非线性规划、动态规划、Markov~规划与模拟技术等系统优化定量分析的理论和方法。阅读本书只需要微积分、线性代数与概率论的基本知识。 本书结构体系完整,理论与实际相结合。各章均配有一定量的习题与案例,用于训练提高综合的建模能力以及案例讨论,同时还给出了模型的软件的实现方法。本书既可供高等院校经济管理类专业、工程等专业的专科生、本科生与研究生等作为教材使用。也适合于从事管理工作的企业管
随着科学技术和社会经济建设的不断发展进步,运筹学得到迅速的发展和广泛的应用。作为运筹学的重要组成部分——线性规划、运输问题、目标规划、整数规划、动态规划、排队论、存储论、决策分析及图与网络分析等内容成为管理、经济类本科学生所应具备的必要知识和学习其他相应课程的重要基础。本书根据管理、经济类本科生知识结构的需要,系统地介绍了上述内容的基本思想、分析思路及应用方法。其内容尽力体现新颖、实用,可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。
《高等学校教材:数学实验与数学建模案例》主要分为两个部分:*部分是数学软件与数学实验,主要是结合高等数学内容及其实验教学介绍MATLAB和Mathematica软件及其数学实验,结合数学建模教学介绍LINCO软件及其数学实验;第二部分是数学建模与建模案例,主要是概述数学建模及全国大学生数学建模竞赛,根据多年数学建模的教学经验,结合老师的部分科研成果,给出了若干数学建模案例。 《高等学校教材:数学实验与数学建模案例》可作为高等学校数学实验与数学建模课程的教材,也可作为参加全国大学生数学建模竞赛的辅导材料。
本书共9章,针对特殊序列,从建模思想的创新、建模对象的拓展、建模方法的改进、建模序列的优化等方面对灰色预测建模技术、算法实现和软件应用等进行深入研究。其主要成果包括以下几个方面:区间灰数序列与离散灰数序列灰色预测模型,近似非齐次指数增长序列灰色预测模型,振荡序列灰色预测模型,小样本多变量灰色预测模型等拓展模型构建方法研究,以及核心程序代码和软件使用介绍。 本书适合社会、经济、交通、水文、农业等相关领域研究人员和硕士、博士研究生参阅。
《数学建模》主要根据“数学建模”课程的教学和数学建模竞赛培训活动的实际需要,以及作者多年从事相关工作的实践经验和体会编写而成。 内容包括:概论;初等数学模型;数学规划模型;微积分模型;微分方程模型;稳定性模型;层次分析法模型;差分方程模型;生态系统的*捕获问题的数学模型;具有收获率的三种群数学模型以及常用数学建模软件。各章均有一定量的习题。建模方法由浅人深,适合数学、应用数学、信息与计算科学、生物工程及资源环境等理工专业本科生、研究生作教材,也适合建模竞赛培训作教材,以及供从事相关研究的科技人员参考。
近十年来,为了改变教学上的被动局面,我们针对学生的实际,结合省级精品课程《经济数学基础》的课程建设和相关教学研究课题的研究,努力挖掘数学在实际问题特别是经济、管理问题中的应用实例,整理编写了一些与教材内容配套的数学模型,并尝试在教学中穿插计授,提高了学生学习数学的兴趣和积极性,收重叠了很好的教学效果。2000年我们申请了校级教学研究项目“经济数学基础应用实例研究”,并获得了2003年校级教学成果二等奖。该项目的研究成果“经济数学基础应用实例”在与近20所院校的交流中也得到兄弟院校同行很高的评价。近两三年来,我们又参阅了大量资料,通过归整理和不断地修改才形成了本书——《数学模型应用实例》。 本书共公三个部分,按微积分、线性代数、概率论与数理统计内容的顺序编写。
本书系统地介绍了运筹学中的重要内容,重点讲解了应用广泛的线性规划、运输问题、整数规划、动态规划、图论与网络计划、存储论、决策分析等定量分析和优化的理论与方法。本书强调应用性,以大量实际问题为背景引出运筹学各分支的基本概念、模型和方法,具有很强的实用性;在基本原理和方法的介绍方面,本书尽量避免复杂的理论证明,通过大量通俗易懂的例子进行理论方法的讲解,具有较强的趣味性,又不失理论性,理论难度由浅入深,并且从实际应用的角度出发在相关章节详细讲解了用Excel进行优化求解的方法。 本书可作为应用型本科院校工程管理类、工程造价类各专业的教材,亦可作为各类工程管理从业人员自学参考书。
本书是与刁在筠等编写的《运筹学(第三版)》配合使用的参考书。全书共分10章,除第1章绪论外,其余每章包括四部分内容:(1)学习要求,给出本章应该掌握的基本知识点;(2)内容要点,先以图表形式列出本章主要内容框架,然后简要列出本章基本概念、基本理论和主要算法;(3)习题解答,对本章课后习题给出详细的解答;(4)典型案例分析,紧扣教材主要内容,精选各类习题并给出详细解答,同时适当选择教材内容的拓展例题,帮助读者加深对知识点的理解和灵活运用。 本书适合于本、专科生的运筹学课程学习以及硕士研究生考试复习之用。
智能优化混合算法是一种以某类优化算法为基础,融合其他智能算法或理论的混合算法,可用于求解各种工程问题优化解。 本书系统讨论了现今应用较为广泛的几种智能优化混合算法,主要内容来源于作者多年的研究成果,使读者比较全面地了解智能优化混合算法的相关知识及应用。本书理论联系实际,集知识性、专业性、操作性、技能性为一体,对智能优化混合算法的原理、步骤、应用等进行了全面且详细的介绍。
排序论作为运筹学的一个分支,有着深刻的实际背景和广阔的应用前景。排序论一直受到国际上学术界的重视。从深层次和长远来看,排序论对提高效率、资源的开发和配置、工程进展的安排以及经济运行等方面都能起到辅助科学决策的作用,管理层和决策层不能不了解有关排序的理论和应用。 排序分为经典排序和现代排序。现代排序是相对于经典排序而言,也就是非经典的、新的排序。现代排序的特征是突破经黄排序关于资源类型、确定性、可运算性、单目标和正则性等基本假设主要有可控排序、成组分批排序、在线排序、多目标排序等10种。本书是国内外本系统论述现代排序这10个研究方向的专著。本书的引论介绍排序论的基本概念,介绍经典排序的基本假设和现代排序的特征,介绍排序问题的三参数表示。第1章到第10章介绍10种现代排序。后有3个附录。附
《运筹学(21世纪高等院校公共课精品教材)》(作者岳宏志、蔺小林)根据运筹学的学科特点,在借鉴国内外运筹学教材优点的基础上,对传统运筹学的内容和方法做了较大的改革。全书分十三章,系统介绍了线性规划、运输问题、整数规划、目标规划、动态规划、图与网络分析、存储论、排队论、对策论以及决策论等运筹学的十大经典分支内容。《运筹学(21世纪高等院校公共课精品教材)》从实用的角度出发,采用易教、易懂和易操作的方式,系统地介绍了运筹学的基本理论、基本思想及基本方法,并以经济、金融和管理等方面的大量实例为背景,详细讲解了运筹学模型的建立和应用。全书内容力求通俗易懂,淡化理论推导而侧重于实际应用。每章均配有习题,分为基础题与提高题两部分,便于不同水平的学生课后训练。本书基本概念清晰,基本原理深入浅出,基