《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的或参考书。
《数值分析全真试题解析(2007-2012)》,本书对东南大学近6年来工学硕士研究生、工程硕士研究生学位课程考试、工学博士研究生入学考试“数值分析”以及理学博士研究生入学考试“高等数值分析”的试题作了详细的解答,部分题目还给出了多种解法.内容包括误差分析、非线性方程求根、线性方程组数值解法、函数插值与逼近、数值微分与数值积分、常微分方程初值问题的数值解法、偏微分方程数值解法以及求矩阵特征值的幂法。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书围绕算术运算展开,在强调常规计算方法训练的重要性的基础上,有针对性地介绍了大量颇具特色的计算方法和技巧,具体内容包括20以内的加减法童子功、一位数加减法进阶、多位数加减法计算技巧、一位数的乘法技巧
《干细胞科技与产业发展报告》主体内容共分三部分,分别为管理篇、科技篇和产业篇,主要跟踪分析国际干细胞领域研发策略,深入介绍干细胞科技研究进展,展望干细胞产业发展方向。在此基础上,提出对我国干细胞研究的建议,为我国干细胞领域政策制定及干细胞科研方向与产业发展提供参考依据和信息支持。《干细胞科技与产业发展报告》可供干细胞领域管理人员、广大科研人员和产业人员阅读和参考。
模拟进化算法求解多目标优化问题是智能计算的一个热门和重要领域,它突破古典运筹学中多目标优化方法的局限性,并具有区别于传统单目标进化算法的特征,在工业工程、科学和国防军事上具有很高的应用价值。本书较系统全面地介绍和讨论多目标进化算法理论与应用方面的基本知识和问题。主要内容包括多目标优化和模拟进化算法的基本概念;主要的多目标进化算法;多目标进化算法的理论问题;设计解决多目标优化的新型进化算法的性能法的理论问题;设计解决多目标优化的新型进化算法的性能评价和测试问题;典型的应用实例。另外,还着重介绍进化算法领域中近兴起的粒子群算法处理多目标问题的理论方法与应用示例。本书在参考外有关书籍的基础上,借助合作者的科研成果,细致而全面地展示多目标进化算法的研究进展,具有新颖性、学术性和应用
《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。
模拟进化算法求解多目标优化问题是智能计算的一个热门和重要领域,它突破古典运筹学中多目标优化方法的局限性,并具有区别于传统单目标进化算法的特征,在工业工程、科学和国防军事上具有很高的应用价值。本书较系统全面地介绍和讨论多目标进化算法理论与应用方面的基本知识和问题。主要内容包括多目标优化和模拟进化算法的基本概念;主要的多目标进化算法;多目标进化算法的理论问题;设计解决多目标优化的新型进化算法的性能法的理论问题;设计解决多目标优化的新型进化算法的性能评价和测试问题;典型的应用实例。另外,还着重介绍进化算法领域中近兴起的粒子群算法处理多目标问题的理论方法与应用示例。本书在参考外有关书籍的基础上,借助合作者的科研成果,细致而全面地展示多目标进化算法的研究进展,具有新颖性、学术性和应用
AnearlyexperimentthatconceivesthebasicideaofMonteCarlopu-tatiosisknownas"Buffon'needle",firststatedbyGeorgesLouisLeclercComtedeBuffonin1777.Inthiswell-knownexperiment,onthrowsaneedleoflengthlontoaflatsurfacewithagridofparallellineswithspacing.Itiseasytoputethat,underidealconditions,thechancethattheneedlewillintersectoneofthelinesin.Thus,ifweleppNbetheProportionof"intersects"inNthrows,wecanhaveanestimateofπaswjocjwill"converge"toπasNincreasestoinfinity.
《九章算术》是中国古代数学专著,也是算经十书之重要一种,历来被尊为算经之首。该书系统总结了战国、秦、汉时期的数学成就,在中国数学 具有重要地位。全书采用问题集的形式,收有246个与人们生产、生活实践紧密相关的应用问题,反映了中国人的数学观和生活观。每道题由问(题目)、答(答案)、术(解题的步骤,但没有证明)三部分组成,有的是一题一术,有的则是多题一术或一题多术。译注本分为原文、注释、译文三部分,注释、译文部分结合现代数学知识和直观生动的图例对原文进行解读,通俗易懂,便于理解。