本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
无
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
随着科学计算水平的不断提高,数值模拟成为自然科学领域的关键技术手段。对于流体领域的研究者,动力学数值模拟是描述流体运动客观现象及规律的重要工具,也是深刻理解流体及其伴生要素输移运动基本理论的重要途径。随着数值模拟的重要性日益显著,数值模拟的核心问题即数学模型的可靠度和准确性也备受关注,如何度量科学计算的综合性能,如何确认和验证模型的计算结果,是流体数值模拟领域进行行业标准化应用和推广亟待解决的重要科学问题。 目前,靠前同业对科学计算确认与验证评价传统模式主要是通过实测资料对模型进行验证以及主观因素为知名品牌的专家评审,针对河流动力模型数值解的可靠性、准确性分析及结果可信度研究甚少。纵观河流数值模拟领域,仍缺乏一套科学规范的可度量评价体系,导致模型性能难以合理的确认和验证,模型
本书以自封闭的形式系统介绍了线性不适定问题的正则化求解方法,以及在数学物理反问题研究中的一些应用。主要内容包括:不适定问题的基本概念和特点,研究不适定问题需要的基本数学工具和方法,求解不适定问题的标准的正则化方法及近年来的新发展,以及正则化方法在逆时热传导、数值微分、逆散射等领域中的应用。本书的内容包含了作者和其他学者近几年来的有关工作。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
本书论述了解非线性方程组的基本理论和方法,着重介绍:Newton法、单纯形算法、同伦延招法、区间迭代法,以及计算机数学库中常用的新算法,还介绍了方法的收敛性定理和方程解的存在**位,并且给出了有实际应用价值的、效果好的算法步骤和数值例题。
本书汇集了第46届至第50届靠前数学奥林匹克竞赛试题及解答.书中广泛搜集了每道试题的多种解法,且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强,本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。
《轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法。在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。《轨迹》可供中学数学教师参考,也可供中学生课外阅读。