【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书共分九章,内容包括误差知识,方程的近似解法,线性代数方程组的解法,矩阵的特征值与特征向量的计算方法,插值法与曲线拟合,数值积分与数值微分,常微分方程初值问题的数值解法,偏微分方程的差分解法。每章末配有适量习题,书末附有习题答案。 本书可作为高等工科院校教材,也可供有关方面工程技术人员参考。
本书共十二章,包括绪论、预备知识、杆系结构有限元、弹性力学平面问题有限元、空间问题与轴对称、板壳分析初步、板壳有限元分析(续)、弹性力学广义变分原理及其有有限元中的应用、有限元动力分析、非线性有限元初步与材料非线性分析、弹性稳定性与几何非线性分析和其他数值方法(含加权余量、半解析、样条有限元和边界单元法)。前六章供本科高年级学生学习有限单元法用,并可供硕士研究生和部分专业博士生选用。本书取材适宜,由浅入深,内容丰富,引入了不少新内容和科研成果;论述严谨、细致,便于学习;较重视原理与方法的论证,但也有足够的算例,几乎章章都有配书教学软件,便于应用和编程参考。 本书可作为土木、交通、水利和工程力学等专业的本科、硕士研究生教材,也可供有关工程技术人员参考。
四元术是元朝朱世杰提出的建立和解答多元高次方程组的方法,它代表了中国古代数学的杰出水平。本书从沈钦裴四元消法法则的统一表示人手,把沈钦裴四元细草用吴消元法的笔算形式表示出来,找到多项式方程组的一般解法。 本书适合数学史工作者、大学数学系师生及计算机专业的师生、中学数学教师及数学爱好者阅读。
《数值计算方法及其程序实现》由编著者多年以来承担的暨南大学物理系硕士研究生必修课"数值计算方法"的讲授内容汇集而成,其内容包括七个部分:绪论、误差和数据处理、线性方程组的数值解法、非线性方程(组)的数值解法、数值积分与微分、常微分方程(组)的数值解法、偏微分方程的数值解法。这些内容通过例题分多个步骤予以展现。首先简要介绍数 值计算的基本方法和理论,再给出实现数值计算的逻辑流程构建,进而在Fortran和Matlab环境下编制计算程序,并分别VisualFortran6.0及Matlab6.5环境下运行,终获得数值计算结果及其图示,同时提供了Fortran和Matlab两种计算机语言编写的相关程序。本书可作为数值计算方法课程的教材或参考书,也可作为计算物理及其相关学科的基础参考书。
本书是根据清华大学出版社出版的由李庆扬、王能超、易大义编写的《数值分析》教材的配套学习辅导和习题解答教材。编写的重点在于原教材中各章节全部习题的精解详答,并对典型习题做了很详细的分析和提纲挈领的点评,思路清晰,逻辑缜密,循序渐进的帮助读者分析并解决问题,内容详尽,简明易懂。本书对各章的知识点进行了归纳和提炼,帮助读者梳理各章脉络,统揽全局。在《数值分析》教材给出的习题的基础上,根据每章的知识重点,精选了有代表的例题,方便读者迅速掌握各章的重点和难点。 本书可作为工科各专业研究生《数值分析》课程教学辅导材料和复习参考用书及工科考博强化复习的指导书。也可以作为《数值分析》课程教师的教学参考书。
本书系统地介绍了现代科学与工程计算中常用的数值计算方法及有关的理论和应用。全书共分9章,包括误差分析,函数插值,函数逼近,数值积分与数值微分、线性方程组的直接解法和迭代解法,非线性方程的数值解法,矩阵特征值与特征向量的计算,以及常微分方程初值问题的数值解法等。本书基本概念清晰准确,理论分析科学严谨,语言叙述通俗易懂,结构编排由浅入深,注重启发性。本书始终贯穿一个基本理念,即在数学理论上等价的方法在实际数值计算时往往是不等效的,因此,本书精选了大量的计算实例,用来说明各种数值方法的优劣与特点。各章末还有一定数量的习题供读者练习之用。 读者对象:高等院校工科研究生和数学系各专业本科生,从事科学与工程计算的科研工作者。
《高等数值计算》由沈艳、杨丽宏、王立刚、冯国峰编著,全书以数值计算方法的理论与方法为主线,在介绍了线性代数知识与误差理论的基础上,全面介绍了求解线性方程组的直接法,求解线性方程组、非线性方程(组)及矩阵特征值与特征向量的迭代法,函数的插值与逼近,数值积分与数值微分,求解常微分方程定解问题的数值方法,求解偏微分方程定解问题的有限差分法和有限元法,书中详细讲述了各种方法的构造思想、理论推导、计算公式以及误差分析等内容。本书结构清晰,重点突出,便于根据不同对象、学时和要求进行教学。此外,各章均配有一定数量的习题,以方便读者学习本课程。 本书既适合作为工科及理科高等院校高年级本科生、研究生的教材,也适合作为教师和广大科技工作者从事科学研究的参考书。