《轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法。在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。《轨迹》可供中学数学教师参考,也可供中学生课外阅读。
本书主要介绍非线性控制系统的基本理论和一些*进展,全书分为八章.章介绍相关的数学预备知识,包括度量、流形、稳定性等:随后的章节主要分为两部分:部分包括第二章和第三章,主要讨论基于微分几何方法的非线性控制系统的分析:第二部分包括其余章节,主要讨论非线性系统的镇定和抗干扰控制问题.其中第二章集中考虑系统的可控性和可镇定性等系统的基本控制特性:第三章处理对非线性系统的化简,包括解耦和线性化。第四章和第五章分别考虑非线性系统的局部和全局镇定控制设计:第六章和第七章分别研究非光滑系统(即切换系统和有限时间稳定系统)的控制问题:后的第八章涉及非线性系统的H∞控制等。 本书可作为从事控制理论及其应用的科研工作者、工程技术人员、高等学校教师和研究生的教科书或参考书。
MathematiCa是当今世界上*秀的数学软件之一,由于它所具有内容丰富、功能强大、界面友好、使用简单方便等突出优点,因而在世界范围内受到广泛好评。 MathematiCa所能处理的内容十分丰富,几乎涵盖了应用数学各主要分支,特别是加强了理工科大学数学大纲中所规定的那些部分。不仅可以满足理工科院校师生在数学教学上的需要,同时也能满足科技工作者求解一般数学问题的要求,现在用户范围还在不断扩大,甚至拓展到银行、金融、政府、企业等部门。 Mathematica的功能主要有数值计算、符号运算、图形处理以及程序设计四大方面。其中符号运算的功能十分突出,是其他计算机高级语言所无法比拟的。有的高级语言(例如Matlab)虽也具有符号运算能力,但都不及MathematiCa的强劲和完善。因此MathematiCa特别受科技部门与高等院校的重视。
本书汇集了第46届至第50届靠前数学奥林匹克竞赛试题及解答.书中广泛搜集了每道试题的多种解法,且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强,本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。