内容介绍 八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚到余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书*一版荣获国家图书馆第八届文津图书奖。*二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成*一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成*。 在书中所描述的这些令人神往的人物中,艾萨克·牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲·热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米·诺特被阿尔伯特·爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟·拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍
本书为菲尔兹奖、日本学士院奖、日本文化勋章得主,日本数学家广中平祐先生的思想文集。书中以广中平祐先生与“奇点解消问题”的故事为线索,讲述了广中平祐在挑战“奇点消解问题”的过程中,对“数学学习”“数学教育”以及“创造性思维”的独到感悟,以及对数学证明与发现的深入思考。另外,本书还收录了广中平祐先生研究生涯中的珍贵访谈、笔记、照片资料,是了解广中平祐先生数学思想以及创造性思维的佳作。
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。本书介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,本书详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。本书可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书第一版荣获国家图书馆第八届文津图书奖。第二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区块链的数学基础,量子通信的原理,以及人工智能的数学极限。
本书是解读望月新一“跨视宇Teichmüller理论(IUT理论)”的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本“IUT理论”的解读手册。书中侧重解读“IUT理论”的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与*数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解“IUT理论”的入门读本,也适合作为学生了解数学思考方法的参考读物。
在这本与生活常识紧密相关的数学手账中,我们将学会正确看待数学学习中的恐惧与挫折感,体会数学思维带来的快乐。作者凭借丰富的教学经验和感悟,借助引人入胜的数学知识和300多幅手绘插画,用简单的语言讲述了对称、模糊逻辑、彭罗斯图案、无穷、孪生质数猜想、博弈论、费马大定理等有趣的数学话题,借此鼓励读者学会处理数学学习中的困难与变化,找到适合自己的思考方法。无论是学生还是数学爱好者,*能在阅读本书的过程中获得学习数学的勇气与自信,唤醒自己 心中的数学家 。
机器人虽然是以纯粹科幻小说的形式走进我们的世界,但如今它已成为日常生活中的既存事实。无论是太空时代的半机械人、棋手自动机,还是我们口袋里的智 能手机,机器人长期以来都是我们和我们的创造物之间令人担忧甚至令人恐惧的关系的象征。 本书追溯了美国文化中机器人观念的历史,引人入胜地探论了从18世纪到21世纪美国人对半机械人、自动机和机器人的观念的演变。作者从跨学科的视野出发, 广泛而深入地借鉴了思想史、文学、电影和电视等资源,独具匠心地探讨了机器人及其衍生的装置,如何不仅在概念上相互联系,而且体现了现代文化中至关重 要的一些问题,如关于男女差异、种族差异、奴隶制、共和主义、机械化、后工业主义等问题。
《几何原本》是古希腊数学家欧几里得的一部不朽之作,被誉为史上zui成功的教科书,牛顿、爱因斯坦、丘成桐等科学家对其推崇备至, 曾国藩、徐光启、余世存等名人对其盛赞有加。 《几何原本》的最大成就及其伟大意义在于它用公理方法建立起演绎数学体系的最早典范,其对数学发展的影响超过了任何其他著作。 《几何原本》自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛能够与《几何原本》相比。 《几何原本》全书共13卷,大约成书于公元前300年。中国最早的译本是1670年意大利传教士利玛窦和中国学者徐光启根据德国神父克里斯托弗·克拉维乌斯校订增补的拉丁文本《欧几里得原本》合译的,定名为《几何
莱布尼兹和牛顿关于微积分优先权的争论闻名整个学术界,甚至是学术界之外。现在,学术界公认,莱布尼兹和牛顿分别独立地创立了微积分,只是牛顿先发明,莱布尼兹先发表。但这场争论在牛顿、莱布尼兹所生活的时代,甚至在他们去世后的很多年都很激烈,中间也发生了很多趣事。本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先权争论期间为自己做出的申辩,从中可以了解他创建微积分的过程以及这场争论发生的部分缘由和过程。另外,中译版本中还增加了大量插图,具有很强的可读性。
暂无内容简介。。。。。。
《漫话普洱茶》普洱茶辨伪目录普洱茶概念普洱茶的制作、存放、口感及药理作用普洱茶辨伪茶区考察散记茶人与茶茶友看茶网络茶话
《通信革命-无限带宽如何改变我们的世界》可被看作一本高层次的科普著作。本书通过介绍通信技术发展的历史向我们介绍了当代的一些高科技知识,例如:激光,光纤,CDMA,TDMA移动通讯等。带领读者认识现金的计算机和网络。