本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
勾股定理应该是大家非常熟悉的数学定理,但你知道它在最初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学中有非常多的数学定理,它们不仅是数学书中一连串用符号表示的公式,还与我们的日常生活息息相关。本书在介绍了许多比较重要的数学定理的同时,更强调了逻辑思维能力和解决问题能力的重要性。本书适合小学高年级和中学生阅读。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
《力学习题与解答》的作者从教多年,深感较好的题目不仅可以起到训练学生运用理论知识解决具体问题的能力,而且也能提升学生对物理学科的兴趣。作者在编写过程中刻意为学生编制和选录了各章习题,按易、难程度分成A、B两组,附于各章后,并将题解汇集成册,与教材配套出版,供学生解题后参考。 《力学习题与解答》将原教材《力学(物理类)》中各章习题逐题解答,汇集成册,可与教材配套使用,也可以单独使用,作为配合其他力学教材的辅导书。为了让使用本书的读者对力学课程更深刻理解,并了解习题编制时作者的意图,特将教材的前言作为本书的序言复录于下。
本书可作为高等师范院校教育学院、教师进修学院数学专业及重量、省级中学数学骨培训班的教材或教学参考书,也可作为广大中学数学教师及数学爱好者拓展数学视野读物。
在这本与生活常识紧密相关的数学手账中,我们将学会正确看待数学学习中的恐惧与挫折感,体会数学思维带来的快乐。作者凭借丰富的教学经验和感悟,借助引人入胜的数学知识和300多幅手绘插画,用简单的语言讲述了对称、模糊逻辑、彭罗斯图案、无穷、孪生质数猜想、博弈论、费马大定理等有趣的数学话题,借此鼓励读者学会处理数学学习中的困难与变化,找到适合自己的思考方法。无论是学生还是数学爱好者,*能在阅读本书的过程中获得学习数学的勇气与自信,唤醒自己 心中的数学家 。
根据高等院校应用型本科专业学生的培养要求,《理论力学》时特别注重内容的编排和素材的选取,着眼于理论的应用与工程实际问题的解决,尽量减少理论的推导、避开就题论题。《理论力学》共14章,按照传统的静力学、运动学、动力学和分析力学基础进行编排。《理论力学》中的例题、思考题和习题精选工程和生活实际问题,突出实用性和趣味性;在内容的选取上,较好地处理了“理论力学课程”与“大学物理”课程的衔接问题,做到既有联系,又不重复;在内容的编排上,既突出应用型专业培养目标的需求,又不失完整性和连续性。全书理论体系清晰、层次分明、重点突出、难点分散。在例题的分析中,既阐明了解题的思路和步骤,又有较好的教学适用性。 《理论力学》可作为高等院校工科类专业理论力学课程的教材和教学参考书,也可供有关工程技
本书分6章论述了数学与教育的关系,数学的重要性,数学教育的重要性以及数学对于教育的特殊性,进而阐明了数学所具有的一系列文化教育功能——数学的自然科学教育功能,社会科学教育功能,人文科学教育功能与思维教育功能。 作者在书中提出了许多自己的新观点,并作了精辟的论述。
当您开始阅读《工程数学:线性代数》时,人类已经迈入了二十一世纪。这是一个变幻难测的世纪,这是一个催人奋进的时代。科学技术飞速发展,知识更替日新月异。希望、困惑、机遇、挑战,随时随地都有可能出现在每一个社会成员的生活之中。抓住机遇,寻求发展,迎接挑战,适应变化的制胜法宝就是学习——依靠自己学习、终生学习。
2012分级进阶版《石春祯英语阅读理解220篇》分为两册:“基础篇”Ii0篇和“提高篇”110篇,分册装订,独立销售,读者可根据需要自由选择。 本书(包括“基础篇”和“提高篇”,以下同)以2011版《石春祯英语阅读理解220篇》为基础修订而成。 本书的220篇文章均选自国外出版的英文原版书刊。选材以议论文和说明文为主,主要涉及科普、经济、社会生活、文化教育、人的生理和心理等方面。 每单元的前4篇为多项选择练习,每篇文章后附有5道阅读理解题。这些题目以深层次问题为主,主要涉及文章的主旨要义,作者的意图、观点或态度,文章的总体结构以及上下文之间的关系等。 每单元最后一篇为英译汉练习,要求把划线的5句话译成汉语,重点练习根据上下文准确理解英语原文并用汉语正确表达的能力。 本书后10个单元的每单元第5篇为新题型练习,其中包括:选
本书是“十一五”*规划教材,详细介绍了世界范围内1l位具有代表性的技术哲学家的技术哲学思想。本书注重史论结合、比较研究和系统分析,分别从工程学的技术哲学、技术哲学的人文关怀、社会批判的技术哲学、技术哲学的功能论解释和技术哲学的综合理论这五个方面展开论述。本书可作为哲学社会科学和工程技术科学相关专业的本科生和研究生的参考文献,也可作为关注技术与人类生活关系的思考者的基本读物。
本书是北京大学数学系微分几何课程的教材,主要讲述三维欧氏空间中曲线和曲面的局部理论,内容包括:预备知识,曲线论,曲面的基本形式,曲面的第二基本形式,曲面论基本定理,测地曲率和测地线,活动标架和外微方法。另有附录叙述了本书所用的微分方程的定理,并介绍了张量的概念。本书力图向近代微分几何的语言和方法靠近,因此在讲述时尽量结合现代流形的概念,并且自始至终使用附属在曲线、曲面上的标架场,对外微分形式有相当详细的介绍。本书叙述深入浅出,条理清楚,论证严密,突出几何想法,便于读者理解与掌握。 本书可作为综合大学及高等师范院校的微分几何课程教材,也可作为高等教育自学考试的教学参考书。
语源:单词的最原始含义。帮助考生从根本上形象化理解单词的含义。将同源单词串联起来,实现关联化记忆。 英语词汇家族图谱:同一语源词汇的完整呈现,使关联化记忆更加方便。 理解助记:不需要记忆,作用是帮助考生理解记忆该单词。 搭配:归纳考研常考词组和搭配,是考研的重要考点。 近义词辨析:帮助考生准确理解词义。 例句:与考研难度相当,帮助考生记忆单词,熟悉考试难度。
本书中既注重知识的全面系统,又注重知识在考试中的应用,在内容全面的基础上突出重点,力求将重点、难点和考点讲清、讲透,帮助考生在薄弱环节下工夫。该书包括公共管理基础、综合知识两个部分,各部分均包括考试大纲、考试样题以及考试样题参考答案等方面内容,知识脉络分明,重点内容突出,可帮助考生巩固复习成果,熟悉考试,适应考试。
这本书的再版对内容进行了更新扩展,全面介绍了非线性有限元分析的方法和理论。新增内容包含了近年来非线性有限元建模领域中前沿方法的简明介绍,以及扩展有限单元法(XFEM)、微观结构的多尺度连续理论、基于位错密度的晶体塑性理论等。 本书集中讨论了离散方程的公式和解答,以应用于固体和结构力学中普遍关注的重点问题。所涵盖的主题包括一维和多维连续体的有限元离散化;非线性材料和大变形的本构方程;离散方程的求解程序,并考虑其数值和多尺度不稳定性;结构和接触-碰撞问题的处理等。 本书是机械工程、土木工程、应用数学、工程力学和材料科学等专业的研究生的教科书,也是科研人员和行业从业者的有力助手。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
《自考英语(二)词汇》是按照英语(二)自学教程考试大纲词汇表为来源,在深入研究自考英语二真题的基础上编写的,可作为自考英语(二)词汇辅导用书,也可作为成人本科学士学位英语词汇辅导用书。本书将大纲词汇表中4500词精心筛选,分为核心词、常考词、基础词三部分,每部分分为若干个单元,通过合理的单词分类和记忆方法,从考试的考点出发,指导考生从重要的单词记起,从而提升记忆效率。本书体例全面,词条不仅包含音标、词性、词义,还设置有多个版块,以 例 的形式标记真题例句,通过语境记忆单词;以 记 的形式标记记忆方法,词根词缀助记,记忆更高效;以 考 的形式标记常用短语或固定搭配,活用单词;以 拓 的形式标记派生词汇、形近词等,归纳总结。
《MBA MPA MPAcc MEM管理类联考与经济类联考综合能力:逻辑高分指南(高教版2020)》首先介绍非形式推理,然后介绍论证和形式推理。其中的每一章都是围绕某个考点,先介绍相应的逻辑知识和逻辑基本方法,然后对可能出现的各种类型的逻辑试题进行深入分析和详细讲解,接着是给出大量同类型的试题作为考生进行同步训练之用,后给出了这些同步训练题的参考答案和具体分析。书的后附近四年管理类联考的逻辑推理试题与解析,近六年经济类联考的逻辑推理试题与解析,便于考生自测和了解考情之用。