作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
有些人对于数学和艺术有成见,认为数学通过人的右脑工作,艺术通过人的左脑丁作。数学家理性而严谨,艺术家感性而浪漫。他们是两个完全不同类型的人群。本书要推翻这个成见。在本书中读者将看到一些数学家如何为艺术而孜孜不倦地工作,而一些艺术家如何热衷于数学的发现。事实上。现在已经有这样一些现代数学家他们不仅是现代数学的开拓者,而且是造诣很深的艺术家,同时也有这样一些艺术家。他们利用数学原理创作出使人意想不到的作品,在这里数学与艺术完全沟通起来了。 数学对艺术的影响由来已久,在文艺复兴时期艺术家利用透视原理创作出不朽的名作,在20世纪荷兰艺术家埃舍尔对无限拼图的探索给人以启迪,萨尔瓦多·达利利用四维立方体的展开图画出了使人震撼的作品。艺术家们从斐波那契数列、曲面、麦比乌斯带中得到启发,数学
有些人对于数学和艺术有成见,认为数学通过人的右脑工作,艺术通过人的左脑丁作。数学家理性而严谨,艺术家感性而浪漫。他们是两个完全不同类型的人群。本书要推翻这个成见。在本书中读者将看到一些数学家如何为艺术而孜孜不倦地工作,而一些艺术家如何热衷于数学的发现。事实上。现在已经有这样一些现代数学家他们不仅是现代数学的开拓者,而且是造诣很深的艺术家,同时也有这样一些艺术家。他们利用数学原理创作出使人意想不到的作品,在这里数学与艺术完全沟通起来了。 数学对艺术的影响由来已久,在文艺复兴时期艺术家利用透视原理创作出不朽的名作,在20世纪荷兰艺术家埃舍尔对无限拼图的探索给人以启迪,萨尔瓦多·达利利用四维立方体的展开图画出了使人震撼的作品。艺术家们从斐波那契数列、曲面、麦比乌斯带中得到启发,数学
本书并不是一本论文集,而是一系列讲稿的有机组合。本书涉及了Menger定理、重构、矩阵—树定理、Brooks定理、Grinberg定理、平面图等核心论题。在讲述时不仅关注原理本身,而且关注其推导过程。如果想对图论有个基本的了解,本书是选择。另外,书中每一章都附有习题、注记和详尽的参考文献。“相信本书会对在坚实的理论与技术基础上搭建起图论的大厦起到十分重要的作用。”
This book grows out of the lectures the first author gave in the summer of 2002 in the Institute of Computational Mathematics of Chinese Academy of Sciences.The purpose of the lectures was to present a concise introduction to the basic ideas and mathematical tools in the construction and analysis of finite element methods for solving partial differential equations So that the students can start to do research on the theory and applications of the finite element method after the summer course.Some of the materials of the book have been taught several times by the authors in Nanjing University and Peking University.The current form of the book is based on the lecture notes which are constantly updated and expanded reflecting the newest development of the topics through the years.
本书实例丰富,涉及多学科各种概率模型。主要内容有变量、条件概率及条件期望、离散及连续马尔科夫链、指数分布、泊松过程、布朗运动及平稳过程、更新理论及排队论等,最后介绍了模拟。本书写得极其生动和直观,并附有大量的不同领域的习题和实用的例子。 本书可作为概率论与统计、计算机科学、保险学、物理学和社会科学、生命科学、管理科学与工程学专业过程基础课教材。
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国人学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成体系。本书在一些问题的处理上有其独到之处,如sylow定理的证明、伽罗瓦理论的处理、可分域的扩张,环的结构理论等。书中有大量的练习和精心挑选的例子。