《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 ============= 《华为数字化转型之道》 本书由华为公司质量与流程IT团队官方出品,从认知、理念、转型框架、规划和落地方法、业务重构、平台构建等多个维度全面总结和阐述了华为自身的数字化转型历程、方法和实践,能为准备开展或正在开展数字化转型的企业提供系统、全面的参考。
本书全面介绍车辆轨迹数据的处理、分析与可视化方法,并深入探讨了基于Python的车辆轨迹数 据处理技术,旨在帮助读者快速掌握车辆时空轨迹数据处理的基本方法和编程技巧,同时提供丰富的实际案例和技术解决方案,覆盖了从数据采集到深入分析的完整技术链条,是交通时空大数据领域车辆轨迹数据处理分析的全面指南。 本书内容涵盖从车辆轨迹数据的基本特征、采集原理到预处理、质量分析、可视化,再到高级应用如路网匹配、排放计算、多智能体仿真,以及特定案例分析如电动汽车充电需求识别和无人机航拍轨迹数据分析。 本书适合计算机相关专业的学生、数据分析师、研究人员以及技术开发人员阅读。
内容简介这是一部能指引零基础读者顺利完成数据资产入表的实操性著作。它不仅为读者提供了数据资产入表所需的全部知识,还给出了实际操作层面的方法指引;既是数据资产入表的初学者指南,也是企业实施数据资产入表操作的工作手册。本书由数据资产管理领域的标杆企业亿信华辰倾情奉献,同时融合了行业的先进实践经验,开创性提出 数据资产三次入表理论 (数据原始资源入表、数据产品入表、数据金融资产入表),得到了来自学术界和企业界的12位数据资产管理专家的高度评价和强烈推荐。本书分为四部分,不仅从战略、方法、工具、实操、案例等角度为读者提供了全面的数据资产入表知识体系,还前瞻性地探讨了数据资产入表后的价值挖掘、资产评估和金融创新。第一部分 数据资产入表全景概览(第1和第2章)深入分析数据资产入表的宏观背景、核
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
本书通过对多个实例的演示与讲解,详细介绍了Excel的*功能组件Power Query在数据查询与数据转换方面的主要功能。全书共分为8章,主要包括Power Query编辑器的基本功能,常见数据类型的查询与导入,对原始数据进行合并、拆分、计算、转换等数据整理操作,Power Query中M公式的编写方法等。 本书语言风趣,专注于具体的应用场景,而不拘泥于功能本身,图示清晰、可操作性强且便于查阅,能有效帮助读者提高Excel的使用水平,提升工作效率。 本书主要面向Excel的初、中级用户以及IT技术人员,对于Excel高级用户也具有一定的参考价值。
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
洞见产业新生态,解码数字新经济 行业场景真实展示 实际案例深度梳理,感受数字转型路径风格 谭建荣院士、郭华东院士、邬贺铨院士、张宏科院士 共同推荐 《产业数字化 释义、场景及应用案例》以《 十四五 数字经济发展规划》中产业数字化部分的核心内容为纲领,从入选工业和信息化部的大数据产业发展示范项目中,选取了具有产业代表性的来自生产一线的数字化转型实践案例,连同数字化建设和转型的共性基础内容,组织了42 个案例,从实践背景、方法手段、主要应用的技术、实践过程中遇到的典型问题、实施流程、典型应用场景等方面,分享了多个行业、多家单位的实践经验,以期帮助读者对产业数字化转型产生更为具体的了解和体会、获得间接经验,为读者提升数字认知和工作能力做一定的基础铺垫。 本书适合具有产业数字化转型需求的相关企业的管理者、
本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
《IBM SPSS数据分析实战案例精粹(第2版)》以IBM SPSS Statistics 24为工具,提供了医疗、金融、保险、汽车、快速消费品、市场研究、互联网等多个行业的数据分析/挖掘案例,基于实战需求,详细讲解了整个案例的完整分析过程,并将模型和软件的介绍融于案例讲解之中,使读者在阅读时能突破方法和工具的限制,真正聚集于对数据分析精髓的领悟。本书还一并提供案例数据的下载,读者可完整重现全部的分析内容。 《IBM SPSS数据分析实战案例精粹(第2版)》适合从初学者到专家各个级别的数据分析人士阅读,包括需要提升实战能力的数据分析专业人士,在市场营销、金融、财务、人力资源管理中需要应用数据分析的人士,从事咨询、科研等工作的专业人士,同时也可以作为各专业的本科和研究生学习数据分析应用的参考书。
nbsp nbsp《Power BI 商业数据分析完全自学教程》是一本系统地讲解利用 Power BI 软件进行商业数据智能分析的自学宝典。《Power BI商业数据分析完全自学教程》以 完全精通 Power BI 为出发点,以 用好 Power BI 为目标来安排内容,全书共 5 篇,分为 14 章,循序渐进地介绍了 Power BI 的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。 第 1 篇为基础入门篇(第 1 章 ~ 第 3 章),主要针对初学者,从零开始,系统且全面地讲解了 Power BI 的入门知识点、基本操作及数据的输入和连接操作。 第 2 篇为数据处理篇(第 4 章 ~ 第 6 章),介绍了 Power BI 数据的整理操作、表格中行 / 列数据的管理,以及 Power BI 数据的高级处理、M 函数的使用等。 第 3 篇为数据分析篇(第 7 章 ~ 第 9 章),介绍了 Power BI 数据的建模操作及 DAX 语言的入门和进阶操作等。
本书面向数学与工程计算,主要讲解了MATLAB 2017a软件基础、初等数学专题概要、高等数学基本问题、线性代数与矩阵论基本问题、概率论与数理统计基本问题、数值分析基本问题、CASIO fx 991CN X(中文版)函数科学计算器简介七方面的内容。本书适合大中专院校理工科学生学习使用,也可供广大科研人员、学者、工程技术人员及MATLAB专业人员参考。
《Python数据分析与大数据处理从入门到精通》主要讲解数据分析与大数据处理所需的技术、基础设施、核心概念、实施流程。从编程语言准备、数据采集与清洗、数据分析与可视化,到大型数据的分布式存储与分布式计算,贯穿了整个大数据项目开发流程。本书轻理论、重实践,目的是让读者快速上手。1篇首先介绍了Python的基本语法、面向对象开发、模块化设计等,掌握Python的编程方式。然后介绍了多线程、多进程及其相互间的通信,让读者对分布式程序有个基本的认识。第2篇介绍了网络数据采集、数据清洗、数据存储等技术。第3篇介绍了Python常用的数据分析工具,扩展了更多的数据清洗、插值方法,为*终的数据可视化奠定基础。第4篇是大数据分析的重点。首先介绍了Hadoop的框架原理、调度原理,MapReduce原理与编程模型、环境搭建,接着介绍了Spark框架原
《大数据挖掘》一书系统介绍了大数据挖掘的概念、原理、技术和应用。包括:认识和理解大数据;大数据挖掘需要的相关技术(大数据获取技术、大数据存储管理技术和大数据可视化技术等);大数据计算框架;大数据挖掘任务(关联分析、聚类分析、分类分析、演变分析、特异群组分析和异常分析);大数据应用实现;以及大数据挖掘工具。 《大数据挖掘》对大数据挖掘技术进行了全面而细致的定义和归纳,并将向读者展现该领域*研究热点和技术。关于大数据应用实现章节的内容将采用作者实际主持和完成的大数据挖掘项目为实际案例,阐述大数据挖掘应用实现过程中的问题、解决方案和取得的成果。 《大数据挖掘》一书的主要读者是数据科学专业的高等学校学生及老师,从事数据和信息质量工作的研究人员、技术人员、管理人员和决策人员
内容介绍这是一本从原理与实践角度全面讲解InfluxDB的著作,由架构师、InfluxDB技术专家撰写,融入了作者构建千亿级监控大数据平台的工程实践经验。从生态、应用场景、功能使用、源码分析等角度对InfluxDB进行了深入的讲解,包含9个企业级实战案例,100余示例,300余条命令和语法详解,能帮助读者从零开始, 吃透InfluxDB的功能和原理,快速晋级为InfluxDB实战专家。 全书一共9章,从结构上分为四个部分:第壹部分 准备篇( ~2章)首先,从宏观角度介绍了InfluxDB的发展历程、适应场景、特点、优势以及社区和生态;然后,手把手教读者如何快速在各种环境中搭建InfluxDB生产环境。 第二部分 基础篇(第3~8章)着重、全面地讲解InfluxDB的核心功能,包括基础操作、连续查询、保留策略、认证授权、集群和可用性、备份管理、节点管理、第三方协议等,并以多个DevOps
本书系统介绍大数据技术的原理、数据挖掘与应用,主要内容包括基本概念、数据收集、数据存储、数据处理、大数据可视化、信息检索、数据挖掘和效能评估。本书以简单易懂的语言、生动有趣的实例和图形展示知识点,将概念、原理与应用融会贯通,并对大数据工具软件进行了细致的梳理。
《城市发展的数据逻辑》通过对城市空间数据和非空间数据(如地形数据、建筑物数据、城市环境数据等)反映城市发展现状和历史的数据进行分析、挖掘,论述城市发展的规律和内在逻辑,为城市发展提供了重要的分析工具和科学依据。 《城市发展的数据逻辑》系统、全面地介绍了与城市发展有关的各种空间数据。在此基础上介绍了国内外对城市生产的研究现状,总结了目前国内外城市大数据研究的形成和发展、城市生长模型及其新方法,并借助一些典型案例,介绍应用城市生长技术的流程与方法。《城市发展的数据逻辑》还介绍了GIS、RS、GPS等新技术在城市发展及城市规划中的应用,以及如何使用新的信息技术方法揭示城市发展过程中诸如道路交通、城市建筑、公共设施等城市因子与城市发展的内生联系。 《城市发展的数据逻辑》的读者对象是城市发展领域
国家高度重视并积极推动新型基础设施的建设和发展。5G作为新基建的排头兵,凭借其万物物联和泛在智能的优势,将为社会带来根本性的变革。本书从新基建基本内涵出发,着眼于5G新基建中的网络规划建设和融合业务发展两条主线展开论述,详细介绍了5G网络架构和关键技术、5G网络规划与建设及5G融合业务应用与实践案例等。 本书内容丰富且深入浅出,适用于通信运营商、规划设计院、业务集成解决方案提供商、5G行业咨询机构等单位的相关技术人员参阅,同时也可以作为对口大专院校和科研机构研究生及教师的参考用书。
本书主要作为教育领域从事教育大数据研究工作者的参考用书。本书从教育大数据的重要意义、国内外教育大数据的研究现状以及政策支持出发,对教育大数据的相关概念和内涵做阐述说明,介绍了教育大数据的技术、技术标准、治理与开放、风险管理与法律政策,重点阐述了教育大数据在教育领域的典型应用,包括教育大数据在课堂教育、校园管理、在线教育、开放远程教育、教育培训行业以及学生综合素质评价等方面的应用,*后提出教育大数据的发展趋势和机遇挑战。
本书从整体上进行了改编、扩展和提升。主题内容也有所延伸,其中包括数据的类型与域、表的比较、映像关系、聚集操作符与汇总、视图更新以及子查询。还特别收录了一个新附录 NoSQL与关系理论。 本书涵盖以下内容: 是否可以编写SQL查询找到在公司每个编程部门都至少工作过一次的员工? 你是否可以确保查询的正确性?为什么恰当的列命名非常重要? 数据库中的null会带来错误的答案。为什么?你又能做什么? 映像关系如何能帮助你表述复杂的SQL查询? 虽然SQL支持 量化比较 ,但是尽量不要使用。为什么?怎样才能避免使用?
《经济学人》杂志年度推荐的三大可视化图书之一 《大数据》作者、《经济学人》大数据主编肯尼思·库克耶倾情推荐,称赞其为“关于数据呈现的思考和方式的颠覆之作” 亚马逊数据和信息可视化类图书排名第3位 畅销书《鲜活的数据》作者近期新力作及姐妹篇 第一本系统讲述数据可视化过程的的普及图书 这是一本教我们如何制作完美可视化图表,挖掘大数据背后意义的书。作者认为,可视化是一种媒介,向我们揭示了数据背后的故事。他循序渐进、深入浅出地道出了数据可视化的步骤和思想。本书让我们知道了如何理解数据可视化,如何探索数据的模式和寻找数据间的关联,如何选择适合自己的数据和目的的可视化方式,有哪些我们可以利用的可视化工具以及这些工具各有怎样的利弊。 作者给我们提供了丰富的可视化信息以及查看、探索数据的多元视角
《数据挖掘技术及其应用(精)》(作者杨杰、姚莉秀)系统地讲述了数据挖掘的基本概念和基本原理,并列举了在相应领域具有参考价值的算法及其改进和应用,是作者多年来从事教学和科研实践的成果。全书共9章,主要内容有:数据挖掘的基本概念和原理,数据预处理,各种分类、聚类和关联规则提取算法,以及在生物信息学、材料学中的实际应用案例。 《数据挖掘技术及其应用(精)》可用作计算机专业本科高年级学生或研究生的教材或参考书,也可供从事计算机信息处理、数据挖掘、工业优化等有关方面工作的科技人员参考。
《数据挖掘(概念与技术原书第3版)》完整全面地讲述数据挖掘的概念、方法、技术和 研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 《数据挖掘(概念与技术原书第3版)》是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都 的参考书,是一本适用于数据分析、数据挖掘和知识发现课程的 教材,可以用做高年级本科生或者一年级研究生的数据挖掘导论教材。本书由韩家炜等著。