筛选条件:

清空筛选条件
顾客评分:
仅五星 以上 以上 以上 以上
销售价格:
0-20元20-30元30-50元50~元以上
折扣力度:
0折-2折2折-3.9折
筛选:
    • 机器学习
    •   ( 72771 条评论 )
    • 周志华 /2016-01-01/ 清华大学出版社
    • " 机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。"

    • ¥82.8 ¥88 折扣:9.4折
    • 为什么:关于因果关系的新科学
    •   ( 9852 条评论 )
    • 【美】朱迪亚·珀尔,【美】达纳·麦肯齐 /2019-07-01/ 中信出版社
    • 在本书中,人工智能领域的权威专家朱迪亚 珀尔及其同事领导的因果关系革命突破多年的迷雾,厘清了知识的本质,确立了因果关系研究在科学探索中的核心地位。 而因果关系科学真正重要的应用则体现在人工智能领域。作者在本书中回答的核心问题是:如何让智能机器像人一样思考?换言之, 强人工智能 可以实现吗?借助因果关系之梯的三个层级逐步深入地揭示因果推理的本质,并据此构建出相应的自动化处理工具和数学分析范式,作者给出了一个肯定的答案。作者认为,今天为我们所熟知的大部分机器学习技术,都建基于相关关系,而非因果关系。要实现强人工智能,乃至将智能机器转变为具有道德意识的有机体,我们就必须让机器学会问 为什么 ,也就是要让机器学会因果推理,理解因果关系。或许,这正是我们能对准备接管我们未来生活的智能机器

    • ¥69 ¥69 折扣:10折
    • 深度学习 人工智能算法,机器学习奠基之作,AI圣经
    •   ( 52777 条评论 )
    • [美]Ian Goodfellow伊恩·古德费洛)、[ /2017-07-01/ 人民邮电出版社
    • 《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。

    • ¥151.2 ¥168 折扣:9折
    • 奇点临近(一部预测人工智能和科技未来的奇书)
    •   ( 27715 条评论 )
    • (美)Kurzweil /2011-10-01/ 机械工业出版社
    • 本书是一本有思维方法论启示的书;是一本站在历史的高度,INN,考科技力量的书;是一本充满想象与预言,但又不失科学论证的书。本书提供了一个崭新的视角:21世纪既是数百年以来科技、创意的顶点,又是对人类终极命运真挚的愿景。 本书特点:奇特与警示的结论,书中六个纪元的划分奇特又富于哲理;严谨与独特的论述方法,通过分析科学发展趋势,演绎并预测未来;警世之语与探讨性对话,通过智者的眼睛去审视自然、科学以及世界;章尾与未来的对话,是一种思想的博弈:通过设想中的未来去理解当今的技术发展和讲化中的人类。

    • ¥47.6 ¥69 折扣:6.9折
    • 人工智能 第2版
    •   ( 9514 条评论 )
    • [美]史蒂芬·卢奇Stephen Lucci),丹尼·科佩克Danny Ko /2018-10-01/ 人民邮电出版社
    • 作为计算机科学的一个分支,人工智能主要研究、开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统,涉及机器人、语音识别、图像识别、自然语言处理和专家系统等方向。 本书包括引言、基础知识、基于知识的系统、高级专题以及现在和未来五部分内容。*部分从人工智能的定义讲起,就人工智能的早期历史、思维和智能的内涵、图灵测试、启发法、新千年人工智能的发展进行了简要论述。第二部分详细讲述了人工智能中的盲目搜索、知情搜索、博弈中的搜索、人工智能中的逻辑、知识表示和产生式系统等基础知识。第三部分介绍并探究了人工智能领域的成功案例,如DENDRAL、MYCIN、EMYCIN等经典的专家系统,振动故障诊断、自动牙科识别等新的专家系统,以及受到自然启发的搜索等。第四部分介绍了自然语言处理和自动规划等高级专题。第五部分

    • ¥97.2 ¥108 折扣:9折
    • Python神经网络编程
    •   ( 10136 条评论 )
    • [英]塔里克·拉希德Tariq Rashid) /2018-04-01/ 人民邮电出版社
    • 本书首先从简单的思路着手,详细介绍了理解神经网络如何工作所必须的基础知识。*部分介绍基本的思路,包括神经网络底层的数学知识,第2部分是实践,介绍了学习Python编程的流行和轻松的方法,从而逐渐使用该语言构建神经网络,以能够识别人类手写的字母,特别是让其像专家所开发的网络那样地工作。第3部分是扩展,介绍如何将神经网络的性能提升到工业应用的层级,甚至让其在Raspberry Pi上工作。

    • ¥62.1 ¥69 折扣:9折
    • 统计之美:人工智能时代的科学思维
    •   ( 6728 条评论 )
    • 李舰 /2019-03-01/ 电子工业出版社
    • 本书基于经典统计学的知识体系,结合数据科学的应用经验,使用历史经典故事、网络热点事件、行业真实案例等素材进行介绍,聚焦于科学思维的训练,并对应到具体的理论和技术点,能够帮助读者轻松掌握各种分析方法的背景和思想,并能快速地将相关知识应用到实际的工作中去。本书深入浅出,所举例子通俗有趣,有助于读者理解人工智能时代的思维模式,应对这迅速变化的世界。

    • ¥50.2 ¥59 折扣:8.5折
    • 机器学习中的数学 人工智能深度学习技术丛书
    •   ( 1367 条评论 )
    • 孙博 编著 /2019-11-01/ 水利水电出版社
    • 《机器学习中的数学》是一本系统介绍机器学习中涉及的数学知识的入门图书,本书从机器学习中的数学入门开始,以展示数学的友好性为原则,讲述了机器学习中的一些常见的数学知识。机器学习作为人工智能的核心技术,对于数学基础薄弱的人来说,其台阶是陡峭的,本书力争在陡峭的台阶前搭建一个斜坡,为读者铺平机器学习的数学之路。 《机器学习中的数学》共19章,分为线性代数、高等数学和概率3个组成部分。第 1 部分包括向量、向量的点积与叉积、行列式、代数余子式、矩阵、矩阵和方程组、矩阵的秩、逆矩阵、高斯 诺尔当消元法、消元矩阵与置换矩阵、矩阵的LU分解、欧几里得距离、曼哈顿距离、切比雪夫距离、夹角余弦等;第2部分包括导数、微分、不定积分、定积分、弧长、偏导、多重积分、参数方程、极坐标系、柱坐标系、球坐标系、梯度、

    • ¥71.8 ¥89.8 折扣:8折
    • 自然语言处理入门
    •   ( 1818 条评论 )
    • 何晗 /2019-10-01/ 人民邮电出版社
    • 这是一本务实的入门书,助你零起点上手自然语言处理。 HanLP 作者何晗汇集多年经验,从基本概念出发,逐步介绍中文分词、词性标注、命名实体识别、信 息抽取、文本聚类、文本分类、句法分析这几个热门问题的算法原理与工程实现。书中通过对多种算法的讲解,比较了它们的优缺点和适用场景,同时详细演示生产级成熟代码,助你真正将自然语言处理应用在生产环境中。 随着本书的学习,你将从普通程序员晋级为机器学习工程师,*后进化到自然语言处理工程师。

    • ¥89.1 ¥99 折扣:9折
    • 视觉SLAM十四讲:从理论到实践(第2版)
    •   ( 1954 条评论 )
    • 高翔 等 /2019-07-01/ 电子工业出版社
    • 本书系统介绍了视觉 SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动、非线性优化,又包括计算机视觉的算法实现,例如多视图几何、回环检测等。此外,我们还提供了大量的实例代码供读者学习研究,从而更深入地掌握这些内容。本书可以作为对 SLAM 感兴趣的研究人员的入门自学材料,也可以作为 SLAM 相关的高校本科生或研究生课程教材使用。

    • ¥91.8 ¥108 折扣:8.5折
    • 人工智能导论
    •   ( 3300 条评论 )
    • 李德毅 于剑 中国人工智能学会 /2018-08-01/ 中国科学技术出版社
    • 本书是中国科协新一代信息技术系列丛书之一。本书内容包括知识表示、知识获取、知识应用三部分。其中,知识表示主要介绍概念表示、知识表示、知识图谱;知识获取主要介绍搜索技术、群智能算法、机器学习、人工神经网络与深度学习;知识应用涉及计算机视觉、自然语言处理、语音处理、专家系统、规划、多智能体系统与智能机器人六部分。力求将人工智能的发展脉络、技术理论、产业成果以翔实的形态展现于人前。除了必要的知识点与宽泛的知识图谱,本书还深入浅出地介绍了有关智能搜索技术、机器学习、神经网络、计算机视觉、语言智能、机器人等在内的不同领域的应用实践成果。本书主要面向大学非计算机类的工科专业的高年级学生与研究生,帮助学生了解人工智能的发展过程与基本知识,熟悉人工智能产业的发展现状与市场需求,培养人工智

    • ¥46.1 ¥49 折扣:9.4折
    • Python深度学习
    •   ( 5641 条评论 )
    • [美] 弗朗索瓦·肖莱Francois Chollet) /2018-08-01/ 人民邮电出版社
    • 本书由Keras之父、现任Google人工智能研究员的弗朗索瓦?肖莱(Franc?ois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。

    • ¥107.1 ¥119 折扣:9折
    • Python机器学习基础教程
    •   ( 4599 条评论 )
    • [德]安德里亚斯·穆勒Andreas C. Müller)[美]莎拉·吉多(S /2018-01-01/ 人民邮电出版社
    • 本书是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。本书适合机器学习从业者或有志成为机器学习从业者的人阅读。

    • ¥71.1 ¥79 折扣:9折
    • 神经网络与深度学习
    •   ( 76 条评论 )
    • 邱锡鹏 著 /2020-04-17/ 机械工业出版社
    • 本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。 全书共15章,分为三个部分。 首部分为机器学习基础:第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者全面了解相关知识;第2~3章介绍机器学习的基础知识。 第二部分是基础模型:第4~6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络;第7章介绍神经网络的优化与正则化方法;第8章介绍神经网络中的注意力机制和外部记忆;第9章简要介绍一些无监督学习方法;第10章介绍一些模型独立的机器学习方法,包括集成学习、自训练、协同训练、多任务学习、迁移学习、终身学习、元学习等。 第三

    • ¥116.2 ¥149 折扣:7.8折
    • 百面机器学习 算法工程师带你去面试
    •   ( 5652 条评论 )
    • 诸葛越 葫芦娃 /2018-08-01/ 人民邮电出版社
    • 人工智能领域正在以超乎人们想象的速度发展,本书赶在人工智能彻底占领世界之前完成编写,实属万幸。书中收录了超过100道机器学习算法工程师的面试题目和解答,其中大部分源于Hulu算法研究岗位的真实场景。本书从日常工作、生活中各种有趣的现象出发,不仅囊括了机器学习的基本知识,而且还包含了成为出众算法工程师的相关技能,更重要的是凝聚了笔者对人工智能领域的一颗热忱之心,旨在培养读者发现问题、解决问题、扩展问题的能力,建立对机器学习的热爱,共绘人工智能世界的宏伟蓝图。 不积跬步,无以至千里 ,本书将从特征工程、模型评估、降维等经典机器学习领域出发,构建一个算法工程师必-备的知识体系;见神经网络、强化学习、生成对抗网络等新科研进展之微,知深度学习领域胜败兴衰之著; 博观而约取,厚积而薄发 ,在末一章为读

    • ¥80.1 ¥89 折扣:9折
    • 深度学习推荐系统
    •   ( 124 条评论 )
    • 王喆 /2020-03-01/ 电子工业出版社
    • 这是一本介绍推荐系统前沿技术的技术书。本书前几章着重介绍深度学习排序模型的技术演化趋势,然后依次介绍推荐系统其他模块的技术细节和工程实现,通过业界前沿的推荐系统实例将所有知识融会贯通。本书着重讨论的是推荐系统相关的经典和前沿技术内容,尤其是深度学习在推荐系统业界的应用。

    • ¥95 ¥108 折扣:8.8折
    • TensorFlow深度学习算法原理与编程实战 人工智能机器学习技术丛书
    •   ( 3667 条评论 )
    • 蒋子阳 /2019-01-01/ 水利水电出版社
    • TensorFlow是谷歌研发的人工智能学习系统,是一个用于数值计算的开源软件库。《TensorFlow深度学习算法原理与编程实战》以基础 实践相结合的形式,详细介绍了TensorFlow深度学习算法原理及编程技巧。通读全书,读者不仅可以系统了解深度学习的相关知识,还能对使用TensorFlow进行深度学习算法设计的过程有更深入的理解。 《TensorFlow深度学习算法原理与编程实战》共14章,主要内容有:人工智能、大数据、机器学习和深度学习概述;深度学习及TensorFlow框架的相关背景;TensorFlow的安装;TensorFlow编程策略;深度前馈神经网络;优化网络的方法;全连神经网络的经典实践;卷积神经网络的基础知识;经典卷积神经网络的TensorFlow实现;循环神经网络及其应用;深度强化学习概述;TensorFlow读取数据的API;TensorFlow持久化模型的API;可视化工具TensorBoard的使用;TensorFlow使用多GP

    • ¥79.8 ¥99.8 折扣:8折
    • Python机器学习手册:从数据预处理到深度学习
    •   ( 1424 条评论 )
    • (美)Chris Albon克里斯·阿尔本) /2019-07-01/ 电子工业出版社
    • 这是一本关于Python的图书,采用基于任务的方式来介绍如何在机器学习中使用Python。书中有近200个独立的解决方案(并提供了相关代码,读者可以复制并粘贴这些代码,用在自己的程序中),针对的都是数据科学家或机器学习工程师在构建模型时可能遇到的*常见任务,涵盖*简单的矩阵和向量运算到特征工程以及神经网络的构建。本书不是机器学习的入门书,适合熟悉机器学习的理论和概念的读者摆在案头作为参考,他们可以借鉴书中的代码,快速解决在机器学习的日常开发中遇到的挑战。

    • ¥78.3 ¥89 折扣:8.8折
    • Python深度学习:基于PyTorch
    •   ( 559 条评论 )
    • 吴茂贵郁明敏杨本法李涛张粤磊 著 /2019-11-01/ 机械工业出版社
    • 这是一本基于新版Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 一部分(第 1~4 章) PyTorch 基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第 5~8 章) 深度学习基础

    • ¥61.4 ¥89 折扣:6.9折
    • 机器学习——原理、算法与应用
    •   ( 820 条评论 )
    • 雷明 /2019-09-01/ 清华大学出版社
    • 机器学习是当前解决很多人工智能问题的核心技术,自2012年以来,深度学习的出现带来了人工智能复兴。本书是机器学习和深度学习领域的入门与提高教材,紧密结合工程实践与应用,系统、深入地讲述机器学习与深度学习的主流方法与理论。全书由23章组成,共分为三大部分。第1~3章为*部分,介绍机器学习的基本原理、所需的数学知识(包括微积分、线性代数、*化方法和概率论),以及机器学习中的核心概念。第4~22章为第二部分,是本书的主体,介绍各种常用的有监督学习算法、无监督学习算法、半监督学习算法和强化学习算法。对于每种算法,从原理与推导、工程实现和应用3个方面进行介绍,对于大多数算法,都配有实验程序。第23章为第三部分,介绍机器学习和深度学习算法实际应用时面临的问题,并给出典型的解决方案。 本书理论推导与证明详细、

    • ¥77.3 ¥88 折扣:8.8折
    • 动手学深度学习
    •   ( 4685 条评论 )
    • 阿斯顿·张Aston Zhang李沐(Mu Li)[美] 扎卡里·C. 立 /2019-06-01/ 人民邮电出版社
    • 本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。 全书的内容分为3个部分:*部分介绍深度学习的背景,提供预备知识,并包括深度学习*基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的

    • ¥76.5 ¥85 折扣:9折
    • 深入浅出图神经网络:GNN原理解析
    •   ( 383 条评论 )
    • 刘忠雨 李彦霖 周洋 著 /2019-12-30/ 机械工业出版社
    • 这是一本从原理、算法、实现、应用4个维度详细讲解图神经网络的著作,在图神经网络领域具有重大的意义。 本书作者是图神经网络领域的资深技术专家,作者所在的公司极验也是该领域的领先者。本书是作者和极验多年研究与实践经验的总结,内容系统、扎实、深入浅出,得到了白翔、俞栋等多位学术界和企业界领军人物的高度评价及强烈推荐。 全书共10章: 第1~4章全面介绍了图、图数据、卷积神经网络以及表示学习等基础知识,是阅读本书的预备知识; 第5~6章从理论的角度出发,讲解了图信号处理和图卷积神经网络,深入剖析了图卷积神经网络的性质,并提供了GCN实现节点分类的实例; 第7~9章全面讲解了图神经网络的各种变体及范式、图分类机制及其实践,以及基于GNN的图表示学习; 第10章介绍了图神经网络的*研究和应用。 作者亲授 图神经

    • ¥61.4 ¥89 折扣:6.9折
    • 机器学习线性代数基础:Python语言描述
    •   ( 1320 条评论 )
    • 张雨萌 /2019-08-12/ 北京大学出版社
    • 数学是机器学习绕不开的基础知识,传统教材的风格偏重理论定义和运算技巧,想以此高效地打下机器学习的数学基础,针对性和可读性并不佳。本书以机器学习涉及的线性代数核心知识为重点,进行新的尝试和突破:从坐标与变换、空间与映射、近似与拟合、相似与特征、降维与压缩这5个维度,环环相扣地展开线性代数与机器学习算法紧密结合的核心内容,并分析推荐系统和图像压缩两个实践案例,在介绍完核心概念后,还将线性代数的应用领域向函数空间和复数域中进行拓展与延伸;同时极力避免数学的晦涩枯燥,充分挖掘线性代数的几何内涵,并以Python语言为工具进行数学思想和解决方案的有效实践。 《机器学习线性代数基础:Python语言描述》适合实践于数据分析、信号处理等工程领域的读者,也适合在人工智能、机器学习领域进行理论学习和实践,

    • ¥33.8 ¥49 折扣:6.9折
广告