这是一本既适合个人,又适合企业的DeepSeek保姆级教程,它能指导我们每个人零基础轻松掌握DeepSeek的高效使用方法,成为使用DeepSeek的高手,走在时代的前列。 作者有多年的创业经验,是AI应用领域的资深专家,是多家500强企业的AI实施顾问,为数百家企业提供了AI应用方面的培训和咨询,本书内容是基于这些经验的总结。本书得到了北青传媒总裁、阿里云副总裁、快手副总裁等多位专家高度评价。 从DeepSeek使用方法到提示词技巧,从DeepSeek在办公、学习、生活等领域的应用,到各个行业的DeepSeek解决方案,本书结合7余个具体的场景,讲解了大量的实用技巧和解决方案。 掌握本书内容,你将收获一下知识: (1)DeepSeek的详细功能和使用方法; (2)DeepSeek的提示词写法和技巧; (3)DeepSeek在邮件、会议纪要、PPT、Excel数据处理、合同检查、翻译、行程规划等8个
AI狂奔的时代,当同事还在为PPT排版熬夜、为数据报表抓狂时,懂DeepSeek的人早已关灯下班 这不是魔法,而是工具碾压的硬核差距! 本书聚焦于DeepSeek的使用方法和技巧,直击30多个高频工作场景,通过100余个开箱即用的提示词模板,助你实现职场的弯道超车。从3分钟速出会议纪要、1键生成爆款思维导图,到悬疑剧本创作、短视频分镜设计,再到法律文书润色、学术数据可视化。无论是PPT排版 效率革命 、海报文案 灵感爆发 ,还是商业计划 专业攻坚 ,都可以用DeepSeek的 理工科大脑 与 深度思考 功能精准破局。 翻开本书,让DeepSeek替你完成80%重复劳动,用AI替你 伪勤奋 斩获升职加薪,把 加班 变成传说,在AI浪潮中率先抢占职业高地!
现今,Web3.0这一概念火爆科技圈,互联网的发展也将迎来新变革。过去,网络只是我们在现实生活中的辅助工具。现在,在这个虚拟世界丰盛的时代,人们的交流方式、消费活动甚至赚钱方法都发生了巨大变化。 本书基于这个时代背景,使用丰富的插图和案例,让你轻松读懂Web3.0。作者从虚拟货币、NFT、DeFi、DAO等新结构和新服务,阐释Web3.0给商业模式的发展带来了怎样的影响,让读者可以在Web3.0时代里大展宏图。
本书是人工智能工具DeepSeek的应用操作指南,手把手教用户从零起步,快速掌握DeepSeek的使用方法,从新手小白进阶到AI使用高手。全书涵盖了DeepSeek的基础理论、核心功能与多场景应用,从下载注册教起,重点讲解提示词的编写技巧,通过具体生动的场景化案例演示,聚焦DeepSeek在日常生活、家庭教育、职场工作、自媒体创作和金融投资等领域的实际应用,为读者提供各场景常用提示词和指令模版。本书力求为读者提供一整套系统化、操作性强的使用指南,既适合初学者快速入门,也为专业用户提供深度指导。
本书作为人工智能专业的入门书,带领读者初步学习和实践机器学习、深度学习的算法、流程和核心技术,并介绍了系统开发及开发环境,通过图解的方式将难懂的专业术语和算法表现出来,让没有相关专业基础的读者能够轻松入门。同时,本书还介绍了一些比较常用的网站网络服务,让读者能够学以致用。本书适合人工智能领域入门读者,也适合对人工智能感兴趣的其他领域读者学习。
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,
ChatGPT是当下最新、最热门的工具、效率工具,但为什么不同的人使用效果天差地别,整体上来说:一是认知上的不足;二是方法上的不足。这正是本书要解决的问题。本书不仅让读者会用ChatGPT,更尝试让读者意识到自己需要构建一个完整的学习体系,同时本书提供构建这个学习体系的方法。有了这个学习体系,才能真正用好ChatGPT,也不止能用好ChatGPT。读者能够根据自己的需求,用好ChatGPT,既不停留在浅尝辄止,也不相信宣称的人人都能用ChatGPT赚钱。
本书主要介绍基于视觉的YOLO框架的技术原理和代码实现,并讲解目标检测领域中的诸多基础概念和基本原理,在YOLO框架的基础上介绍流行目标检测框架。本书分为4个部分,共13章。第1部分介绍目标检测领域的发展简史、主流的目标检测框架和该领域常用的数据集。第2部分详细讲解从YOLOv1到YOLOv4这四代YOLO框架的网络结构、检测原理和训练策略,以及搭建和训练的YOLO框架的代码实现。第3部分介绍两个较新的YOLO框架 YOLOX和YOLOv7,着重讲解其设计理念、网络结构和检测原理。第4部分介绍DETR、YOLOF和FCOS在内的流行目标检测框架和相应的代码实现。本书侧重目标检测的基础知识,包含丰富的实践内容,是目标检测领域的入门书,适合对目标检测领域感兴趣的初学者、算法工程师、软件工程师等人员学习和阅读。
《DeepSeek大模型高性能核心技术与多模态融合开发》深入剖析国产之光DeepSeek多模态大模型的核心技术,从高性能注意力机制切入,深入揭示DeepSeek的技术精髓与独特优势,详细阐述其在人工智能领域成功的技术秘诀。《DeepSeek大模型高性能核心技术与多模态融合开发》循序渐进地讲解深度学习注意力机制的演进,从经典的多头注意力(MHA)逐步深入DeepSeek的核心技术 多头潜在注意力(MLA)与混合专家模型(MoE)。此外,《DeepSeek大模型高性能核心技术与多模态融合开发》还将详细探讨DeepSeek中的多模态融合策略、技术及应用实例,为读者提供全面的理论指导与应用实践。《DeepSeek大模型高性能核心技术与多模态融合开发》配套所有示例源码、PPT课件、配图PDF文件与读者微信技术交流群。 《DeepSeek大模型高性能核心技术与多模态融合开发》共分15章,内容涵盖高性能注
本书基于学术写作的核心在于结构化的思维这一理念,全方位地介绍了如何应用 AI 辅助学术写作。AI 辅助学术写作的流程主要包括选题的确定、前言和文献综述的撰写、理论框架和研究方法的设计、研究框架与正文的组织、结论的构建、初稿的润色、标题摘要的撰写与投稿等方面。 本书力求为读者提供多样化的解决方案。这些解决方案依据不同的写作目标和策略制订,从而让读者可以根据具体需求选择。此外,本书还引导读者探索各种 AI 工具,应用好这些 AI工具有助于解决具体问题,如数据查询、参考文献管理、语言润饰等,极大地节省了学术写作的时间和精力。 无论是学生、教师、研究者,还是对学术写作有浓厚兴趣的读者,本书都能够帮助其更 好地理解人工智能在学术写作中的应用,在逻辑清晰、条理分明的框架内进行有效的学术写作,提高写作技巧,并
《AI智能办公实战108招:ChatGPT Word PowerPoint WPS》通过8大专题内容、108个实用技巧,讲解了运用ChatGPT结合办公软件Word、PowerPoint以及WPS,实现AI办公智能化、高效化的方法。随书附赠了108集同步教学视频、90多个素材 效果文件、65个关键词等。 ChatGPT Word高效处理文档,讲解了运用ChatGPT检查与纠错、统计数据、处理文本、智能生成营销方案、根据提示词生成文本、优化文本用词、改写文章风格、编写论文大纲等内容。 ChatGPT PPT智能生成演示文稿,讲解了在ChatGPT中逐步生成PPT、生成PPT完整文稿,以及ChatGPT Mindshow、ChatGPT 闪击PPT、ChatGPT ChatPPT生成PPT等内容。 ChatGPT WPS生成办公文档与演示文稿,讲解了用ChatGPT生成WPS办公文档、旅游行程、培训计划、年终总结、辞职报告、分析报告、述职报告、商务演示PPT、活动策划PPT、行业分析PPT等内容。 最后通过一个综合案例 年终总结
工业数字化时代已经到来,基于模型的系统工程和设计已经成为工业 智 造的手段。数字化设计在汽车行业的需求体现得尤为明显,模型作为数字化设计的主线索已经贯穿于从产品概念、系统需求、软件架构、软件实现到软件组件测试、软件集成验证、系统集成验证、产品交付的各个环节。本书既从广度上重点介绍了Simulink工具平台在各个工业领域上的广泛应用,又从深度上剖析了Simulink从架构、建模、仿真、代码生成、自动化测试与验证到硬件生态建设这样一条完整的产品建设思路。 本书是面向汽车电子、航空电子、工业控制、智能家电、无人机系统、机器人控制、电力电子等多个工业领域而撰写的专业著作,可供相关行业的公司、研发团队、工程师以及高校师生参考。
在人工智能的热潮中,也许我们一直过度关注技术的工具性,而忽视了技术的生存性。技术作为一种人类改变世界和分析世界的方法,也逐渐影响着人类对自我的认知。通过统计数据、数字模拟,人类增加了对世界的了解和控制,同时也增加了对技术的怀疑和不确定。特朗普的竞选团队曾充分利用人类对数据的怀疑进行公关。真实和虚构的分界在逐渐溶解。这一点在深伪技术中得到最好的体现。真实的数据被窃取,并用于捏造数字空间中的假象,用户开始相信假象。如果我们不立刻开始反思数字虚拟中蕴含的本质性权力,后果将是灾难性的。
本书是教授如何使用AI技术进行公文写作的实用指南。全书分为四章。第一章介绍了AI指令提问的原理和技巧,讲述AI时代提问的特点,以及如何向AI提出优质指令。第二章总结了多种实战方法与技巧,通过应用场景与示范案例,教读者如何针对具体场景向AI提问。第三章聚焦公文写作,涵盖常用AI写作工具和使用技巧介绍,以及如何通过向AI工具提问来指导各类具体公文的写作。第四章深入探讨公文写作的进阶技巧,介绍如何通过AI工具生成公文经典表述和结构化句式,助力读者高效提升公文写作水平。本书旨在通过AI赋能公文写作,提升职场公文写作的效率与质量,是企事业单位实用工具书。
申报课题是高校教师和科研工作者十分重要的工作内容。 本书采用倒金字塔思路,对课题申请书进行了拆解,并系统介绍了如何利用 AI 辅助做好课题申报工作。本书第一章对课题申报进行了概述,分别介绍了各级别课题的申报公告和申请书及活页。第二章~第十二章分别介绍如何利用 AI 辅助开展课题申报的具体工作,主要有寻找选题、分析课题立项选题,以及课题论证相关部分的写作,包括研究背景写作、学术史梳理及研究动态写作、研究价值写作、阐释研究对象与框架思路写作、课题的重点难点写作、主要目标写作、研究计划及其可行性写作、其他部分写作。本书讲解全面、细致,并采用案例直观展示,方便读者学习。
社会科学(CSS)领域。文本详细描述了四个关键的方法,自动社会信息提取,社会网络分析,社会复杂性理论和社会模拟建模。第二版增加了许多问题和练习来强化、巩固、测试已经学习的内容,通过解决问题加深理解,并实践编写代码来实现想法。主题和特点:包含一千多个问题和练习,以及一个缩略词列表和词汇表;研究计算机和社会系统之间的异同;介绍了自动化信息提取的;探讨CSS中社会复杂性的度量、科学规律和生成理论;回顾社会模拟的方法论,涵盖变量模型和面向对象模型。
作者对计算机的运算和人脑思维的过程进行了比较研究,具有高度的前瞻性,为机器人研究指明了方向。《计算机与人脑》形象生动,图文并茂,对广大青少年科技创新思维具有极大启发作用.该书被誉为20世纪的天才之作。
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
本书主要介绍了大模型的发展与演变、相关技术、应用场景、未来发展趋势和前景。本书首先回顾了大模型技术的起源和发展历程,然后介绍了数据预处理、Transformer、预训练与微调、模型推理和PyTorch框架等技术。此外,本书还通过具体的案例和实践展示了如何应用大模型技术来解决实际问题。本书旨在帮助读者全面了解大模型技术的发展与应用,并推动其在各个领域的应用和发展。 本书图文并茂,理论翔实,案例丰富,适合从事大模型开发的科研人员以及广大的开发者作为技术参考和培训资料,亦可作为高校本科生和研究生的教材。
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用