本书为 十二五 普通高等教育本科*规划教材《分析化学》(第6版,上册)的配套教学参考书。全书共11章,编写顺序与主教材一致,对主教材的思考题和习题进行了详细解答,部分章节还增加了一些补充题。 本书既可作为高等学校化学类及相近专业的本科生学习分析化学课程的习题集,又可作为高年级学生考研复习阶段的参考资料,同时也可供广大教师作为教学参考书使用。
本书介绍了4个方程:高斯电场定律、高斯磁场定律、法拉第定律和安培—麦克斯韦定律。本书对每个方程都进行了非常详尽的讲解,包括每个符号详细的物理意义,各方程的积分形式和微分形式等。本书还配有网站。网站包含了书中所有内容的英文原声MP3文件,可以在线播放。网站上还有书中所有习题的答案、所有习题的解题步骤,以及互动形式的分步骤提示。本书可作为相关课程教材使用,也可作为电子信息等专业课程的配套辅导书,还可以供自学使用。
《新编大学物理(第二版)习题集》内容包括质点运动学、质点动力学与刚体力学基础、机械振动、机械波、波动光学、气体动理论、热力学基础、真空中的静电场、静电场中的导体和电介质、恒定磁场与磁介质、电磁感应、狭义相对论基础、量子力学基础共十三章.
几何三大难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
本练习册为一套两册,根据现行的大学物理教学大纲的基本要求编写,题型有选择题、填空题、计算题、理论推导与证明题、错误改正题和问答题,每次练习的题量大体相当于目前大学物理考试题量的一半,适合所有理工科专业的大学物理课程使用.
本书是按照实验教学的要求,专为有机化学实验教学编写的教材。本书内容主要包括有机化学实验的基础知识、天然有机化合物提取分离技术、有机化合物的合成、物理常数的测定、色谱分析及有机化合物性质实验等。本书将有机化学反应原理、有机化合物合成分离、天然有机化合物的提取、有机化合物物理常数测定以及相关实验方案设计等内容融为一体,具有简明生动、应用性强等特点。
本书是在《物理学简明教程学习辅导》的基础上修订而成的。 本书与马文蔚等编写的《物理学简明教程》(第二版)配套。本书各章节顺序与主教材一致,每章分基本要求、学习指导、问题分析与讨论和习题分析与解答四个部分。每章均提出教学要求;归纳和总结知识要点,并补充典型例题,进行分析、讨论和解答;分析和讨论主教材中每章的问题;对主教材中每章的习题给出简明分析和解答。全书紧扣主教材,从教学实际出发,注重实用性。 本书适合以《物理学简明教程》(第二版)为教材的师生作为教学和学习的辅助用书,也可供其他读者自学时使用。
本书是一本简单的书也是一本复杂的书,是一本遥远的书也是一本亲近的书。在书中,作者为大家介绍了10位来自不同地区的数学先驱的生平事迹与他们的伟大成就。也许其中介绍的一些数学问题你并不了解,也许里面的一些专业术语你并不熟悉,但是这并不会妨碍你对他们伟大人格的理解,也不妨碍你从他们身上了解到一些投身科学的精神。希望每个人都能从这本书中得到一定的启发,也相信通过作者的生动描述会让大家对看似枯燥的数学有一个崭新的认识。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《怎样解题:数学思维的新方法》经久不衰的畅销书出自一位著名数学家的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了《怎样解题:数学思维的新方法》的甜头,他们在《怎样解题:数学思维的新方法》的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
本书是第二版,较版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。本书是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和*理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
本书从科技这一独特视角,勾勒出了中华民族五千年来历史文化发展的轨迹,反映了中国科技历史文化的基本面貌和中华民族精神。本书文理兼备,是中国传统文化知识的百科丛书中的一本。同时也是一本增长知识、陶冶情趣,进行爱国主义教育的好书。
本书由大学生自然科学指南和心理学指南两册书合集而成:前者包括物理学、天文学、几何学、化学和生物学,着重讲物理学及一些天文学的基础知识;后者则介绍了心理学和相关学科的专业领域中所获得的研究成果和理论。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。