《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《高等学校工科电子类规划教材:离散数学(第3版)》介绍计算机专业最需要的离散数学基础知识,共8章,包括数理逻辑、集合、二元关系、函数、无限集合、代数、格与布尔代数、图论等,并含有较多的与电脑科学和工程有关的例题和习题。《高等学校工科电子类规划教材:离散数学(第3版)》适合於高等理工科院校电脑科学、工程和应用专业作教材,也可供教师、研究生、高年级学生和有关工程技术人员作参考书。
《高等代数》是1978年出版的《高等代数》的第三版。1978年版则是作者在他们所编的《高等代数讲义》(1964年)、《高等代数简明教程》(1965年)的基础上修改而成的。这次修订,增加了整数的可除性,删去了广义拟及最后一章的代数基本概念内容。另外,还作了多处的文字修订,并局部地改善了一些内容的处理。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于初学生尤其是数学竞赛选手、初数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程及。省级骨干教师培训班参考用书。
《数学符号理解手册》生动地描述了符号们的成长历程,由浅入深地概括了数学公式,枯燥的数学公式深深地印入你的脑海之中。这一篇篇的小故事幽默地囊括了从小学算术到大学微积分的一系列的数学基础知识,使你在轻松阅读的同时,大大地提高了数学综合应用的能力。读完《数学符号理解手册》,你会发现数学并不可怕,数学公式不比娱乐头条难记。
《数学分析中的问题和反例》汇集了“数学分析”方面的问题和反例500多个。全书共八章,内容有数列、函数微分、积分、级数、一致收敛、多元函数、重积分与参变量积分。 《数学分析中的问题和反例》所选的问题和反例比较典型,难度适中,构思新颖,解法精巧,富有启发性。书中不少问题和反例直接选自外有关学者所做的工作。《数学分析中的问题和反例》对正确理解“数学分析”的基本概念,掌握“数学分析”的基本理论和技巧很有好处。 《数学分析中的问题和反例》可供大学、大专数学系师生、数学工作者参考。
本书是编著者多年为计算机及其他非数学系学生讲授计算方法后,按照以下的思路所编写的教材。(一)计算方法本身所介绍的是一些适合于计算机上使用的数值分析方法,这些方法的基础是数学分析,代数,微分方程等数学理论,根据我校学生比较注重基础理论这一特点,——本书在介绍方法的同时,尽可能地阐述清楚方法的数学理论根据,并对方法的有关绪论做出严格而简洁的证明。(二)数值分析中的各种方法具有相对的独立性,但作为一门课程,我们尽力把它编写成具有较好连贯性及较为完整的教材。(三)尽管篇幅有限,我们尽可能多地讲述适合于计算机上使用的数值计算方法,并可能地把每个方法讲透彻。另一方面,由于授课时的限制,对诸如有限元方法,偏微分方程数值解法等只能忍痛割爱。(四)全书内容需讲授72-80学时。授课学时不足72-80时,对
本书有别于普通的高等数学辅导书,收录的题目较难,归类为28个专题,其内容随着高等数学课程的进展而逐步深入。书中所选题目是编者十年教学经验的积累,其中许多题目具有很强的代表性。这里只给出题目的答案及简单提示,并没有给出详细的解题过程,而对解题方法的叙述也很简单,目的是给读者或使用本书的老师留有较大的发挥空间。另外,本书还汇集了北京市大学生(非数学专业)数学竞赛第十二届(2000年)至第十四届(2002年)的试题,并给出了较详细的参考答案。 本书可以作为高等数学的提高课程“高等数学解题方法”的教材,或作为学生参加高等数学竞赛的参考书,也可作为高等数学教师日常教学的参考书。
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
《高等代数》是1978年出版的《高等代数》的第三版。1978年版则是作者在他们所编的《高等代数讲义》(1964年)、《高等代数简明教程》(1965年)的基础上修改而成的。这次修订,增加了整数的可除性,删去了广义拟及最后一章的代数基本概念内容。另外,还作了多处的文字修订,并局部地改善了一些内容的处理。
本书包括小波变换、一元多分辨分析与正交小波、紧支集实小波、小波包、多元小波、双正交小波、样条小波、小波提升理论等发展较为成熟的小波分析基本内容。本书讲解透彻,证明细致,特别关注小波分析解决实际问题的原理。 本书不要求读者具有高深的数学基础,可供希望了解小波分析基本内容及原理的读者参考,也可作为研究生与高年级本科生的小波分析教材使用。
《高等代数》是1978年出版的《高等代数》的第三版。1978年版则是作者在他们所编的《高等代数讲义》(1964年)、《高等代数简明教程》(1965年)的基础上修改而成的。这次修订,增加了整数的可除性,删去了广义拟及最后一章的代数基本概念内容。另外,还作了多处的文字修订,并局部地改善了一些内容的处理。
《线性代数学习指导(科学版)》是为正在学习线性代数(高等代数)的高等院校理工科学生,正在复习线性代数准备报考研究生的读者,以及从事这方面教学工作的教师编写的。 《线性代数学习指导(科学版)》全面、系统地总结和归纳了线性代数问题的基本类型和每种类型的基本方法,再选择典型的例题加以分析讲解,然后再配备相应的习题自我测试。夯实基础,启发思路,培养独立思考能力。此外,《线性代数学习指导(科学版)》还对现行教材中相对薄弱的部分做了必要的补充。
这本《数学维生素》(作者朴炅美)起到的作用是帮助读者消化、吸收重要的营养素(数学知识),所以它不是什么数学蛋白质或数学碳水化合物,而是数学维生素。人类仅凭吸收维生素无法维持生命,与此相同,在阅读《数学维生素》这本书时,应同时阅读强调数学知识的书籍,这才是正确的方法。
本书是Springer统计系列丛书之一,旨在让读者深入了解数据挖掘和预测。 随着计算机和信息技术迅猛发展,医学、生物学、金融、以及市场等各个领域的大量数据的产生,处理这些数据以及挖掘它们之间的关系对于一个统计工作者显得尤为重要。本书运用共同的理论框架将这些领域的重要观点做了很好的阐释,重点强调方法和概念基础而非理论性质,运用统计的方法更是突出概念而非数学。另外,书中大量的彩色图例可以帮助读者更好地理解概念和理论。 目次:导论; 监督学习概述; 线性回归模型; 线性分类方法; 基展开与正则性; 核方法; 模型评估与选择; 模型参考与平均; 可加性模型,树与相关方法; 神经网络; 支持向量机器与弹性准则; 原型法和最近邻居; 无监督学习。
《高中数学竞赛专题讲座》(辑)12种出版以来,反响强烈,深受广大读者喜爱,并收到了大量反馈信息。很多读者,包括一线竞赛辅导的教师和竞赛研究人员提出了许多宝贵的建设性意见,希望我们再组织出版一套以解题方法和解题策略为主的丛书。为了满足广大读者的需求,我们在全国范围‘内组织的数学奥林匹克教练编写了《高中数学竞赛专题讲座》(第二辑)共8种:《图论方法》、《周期函数与周期数列》、《代数变形》、《极值问题》、《染色与染色方法》、《递推与递推方法》、《组合构造》;考虑到配套,把’辑中《数学结构思想及解题方法》放在第二辑出版。 丛书的起点是高中阶段学生必须掌握的数学基本知识和全国数学竞赛大纲要求的一些基本的数学思想、方法,凡是对数学爱好的高中学生都有能力阅读。丛书的特点是: 1.充分吸
《李群和李代数》是现代数学中的基本的研究对象,在整个数学大厦中占有重要的位置。如果把整个数学看成一个按重要性从中心往外发展的一个系统,那么李群和李代数必定位于这一系统的中心附近。本书由赵旭安编著。
《数学开心辞典(第2版)》由与数学有关的11个趣味单元构成,内容涵奇数妙图、游戏大观、智力趣题、幽默专栏、古今谜语、中外诗联、学界趣闻、数字语言、名题赏析、数学前沿、名人名言。通过编者的分析评说,力图展现数学科学丰富多彩的内涵,扩展从事数学工作的视野,了解数学娱乐中快乐有趣的原委,掌握参与游戏制胜的技巧,为读者提供接近数学、感受数学的机会,增进对数学的理解与热爱。
本书是一本参赛的指导书,同时也是一本学习微积分的复习书。我们对微积分的内容进行整理归纳出知识要点,并通过典型例题的解法分析加以综合,使读者对微积分的每个知识点得以融会贯通。当前,我国从小学到高中都是围绕着升学的指标指挥棒转,学习为应试,其结果是:会套模式解题,不会尝试分析解决问题,长期的教育熏陶,使人形成了思维惯性。我们希望通过数学竞赛,通过本书的学习,能慢慢改变你的思维方式。数学需要运算能力、空间想象能力和抽象思维能力等,做习题对学好数学是重要的,在做运算难度大、步骤长及需要技巧的数学题的过程中有时最能获得数学知识,最能培养分析问题、解决问题的能力。看书和动手解题相结合必能使你学会如何去理解数学知识、如何去分析推理,从而对背景和题型稍新的数学问题不再束手无策,最终培养自己
《高等代数》是1978年出版的《高等代数》的第三版。1978年版则是作者在他们所编的《高等代数讲义》(1964年)、《高等代数简明教程》(1965年)的基础上修改而成的。这次修订,增加了整数的可除性,删去了广义拟及最后一章的代数基本概念内容。另外,还作了多处的文字修订,并局部地改善了一些内容的处理。