偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书是理工医农各专业的大学生学习“高等数学”课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生 好地理解“高等数学”课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有习题答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这不仅可以开拓学生的解题思路,帮
本书前两章研究出土算术文献的文本和思想内容。主要创新点是:提出两种整理出土算术文献文本的新方法;证明清华简《算表》有开平方功能;为简牍性质问题提供新线索。第三。章讨论学界判断算术文献成书年代的主流方法:该方法针对的是度量衡等时代信息 的零星信息,但在一本已经定型的书中,这些信息恰恰是 容易被后代改动的,不能作为主要依据。在此基础上,作者提出新的解决思路。第四章研究数学与儒学的互动。第五章研究数学与史学的互动,主要是解决其中跟数学有关的疑难问题,比如讨论《史记》记载的孔子俸禄和《汉书》记载的汉代“提封田”(领土面积)。后两章是目前学术界较少关注的。
本书是根据高校网络*分公共基础课全国统一考试大纲《“高等数学(B)”考试大纲》编写的学习和应试指导书。编写本书是为了使考生更好地理解高等数学中的基本概念、基本理论、基本方法,掌握常用的运算技巧,帮助考生顺利地通过考试.编写本书的指导思想如下: 1.本书系统全面地涵盖了《“高等数学(B)”考试大纲》中的考核知识点,并对知识点的内容做了简约化的梳理,舍去了不必要的赘言。目的是使考生能够在有限的时间内,掌握好必要的、够用的考试内容。 2.针对考生不易理解的概念和不易掌握的方法,从不同角度进行分析、讲解,以利于考生自学. 3.按《“高等数学(B)”考试大纲》关于试卷题型的要求,在本书的各章,采取分题型归类的方法,对典型题目及其解题的思路做了引导性的讲解,旨在帮助考生了解出题形式和命题思
本书为科学出版社出版的《高等数学》(马少军、张好治、李福乐主编)的配套辅导,是编者多年教学经验的总结.本书每章内容包括基本内容、基本要求、习题解答.其中,基本内容列出了各章的基本理论知识和常用的计算公式;基本要求指出了各章每一部分内容应该掌握到什么程度,便于读者在复习时能合理分配力量;习题解答对《高等数学》的每一节课后习题以及各章的自测题都做了全面详细的解答.另外,书后还为考研的学生准备了六套综合测试题,并做了解答,便于学生了解考研题型和难度.本书内容丰富,解答明确,启发性强,通过认真学习,既能巩固所学的理论知识,又能有效地提高运算能力和技巧,还可提高读者分析问题和解决问题的能力.
本书是与主教材 高等数学教程 (上 下册,第3 版,范周田 张汉林编著,机械工业出版社出版) 配套的教学辅导书,集知识点总结 要点提示 例题演示 练习册 习题集于一体. 全书十二章既是一个整体又相互独立,可以分为十二个独立的练习册来使用. 书中精选例题568 道,练习题428 道,是学习高等数学必要的工具书.书中的第六章和第十二章的例题分别为一元微积分的综合例题和整个微积分的综合例题,习题则是近年的考研题或竞赛题. 除第六章 第十二章外,每一章的第 一部分和第二部分均给出了所在章节的主要内容和教学要求及要点提示,可以使读者方便地了解相关的重点及高等数学教学大纲的要求; 第三部分是精选例题,读者可以从中学习典型的解题思想与基本技巧; 第四部分是练习册,读者可以直接在书上完成练习; 第五部分是更多的习题.其中后两部分的习
本书是为学习高等数学的读者编写的,按国内通常高等数学教材知识点布局,分为十二章,每章设若干节、知识脉络图和按章模拟考题.各节均设诸栏目,对高等数学的主要知识点进行归纳,释疑解惑,剖析典型例题,揭示解题方法与技巧,并配制两级测试题及答案与提示,供学生自测.
本书是同济大学数学系编的《高等数学》第七版,从整体上说与第六版没有大的变化,内容深广度符合 工科类本科数学基础课程教学基本要求 ,适合高等院校工科类各专业学生使用。 本次修订遵循 坚持改革、不断锤炼、打造精品 的要求,对第六版中个别概念的定义,少量定理、公式的证明及定理的假设条件作了一些重要修改;对全书的文字表达、记号的采用进行了仔细推敲;个别内容的安排作了一些调整,习题配置予以进一步充实、丰富,对少量习题作了更换。所有这些修订都是为了使本书更加完善,更好地满足教学需要。 本书分上、下两册出版,上册包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程等内容,书末还附有二阶和三阶行列式简介、基本初等函数的图形、几种常用的曲线、积分表、习题答案与提
本教材适用于各理工学科中非数学专业的高等数学课程.由于高等数学基本理论、基本方法和基本技能,特别是微积分的基本理论和方法在各理工类等学科中具有广泛的应用,所以本教材进一步完善了微积分方面的基本理论和方法.同时,因傅里叶级数在理工类学科中具有广泛的应用背景,所以本教材把傅里叶级数单独作为一章,其目的是强调傅里叶级数的重要性.本教材的特点是每一章节都列举了大量的例子,题型多样化,除了有利于学生掌握知识外,还有利于学生思维能力的培养;每一节附有习题,每一章附有总复习题.《BR》本教材共十二章,分上、下两册.上册内容:函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,向量代数与空间解析几何;下册内容:多元函数微分法及其应用,重积分及其应用,曲线积分与曲面积分,
《高等数学》是根据高等学校理工科数学教学大纲所编写的,全书分为上、下两册,每节后配有基础练习题,每章后配有总复习题,书末有习题答案。此书可作为高等学校理工科高等数学的教材或其他有关学校和有关专业的教学参考书。 《高等数学》注重基本理论和基础知识的介绍,概念的引入力求与学生中学的知识相衔接,并适当地压缩了一些与中学知识重复的地方。每节的基础练习题有助于学生理解和消化所学内容,每章的后一节都是综合举例环节,此节的大多数例题都有详细的注解,使学生增强对本章知识的综合应用能力,提高解题技巧,以适应高年级的考研或工作后应用的需要,而每章后的总复习题选用了历年研究生入学考试的一些试题,是对学生所学知识的综合检测。
本书是工科类微积分课程教材,主要特点是包含了二维码技术和相关数学历史文化知识介绍。本书共分6章,主要内容包括函数的极限与连续、导数与微分、中值定理与导数的应用、不定积分、定积分、定积分的应用。教材注意与中学数学的衔接,增加了中学数学教材中包含且对微积分学习很必要的知识点,如常用符号、特殊数列、三角关系公式等;也增加了中学数学教材中不包含而学习微积分的知识点,如和差化积与积化和差公式、反三角函数等。另外,教材注重整体性,对知识的来龙去脉有恰当的介绍,便于学生把握;教材注重可读性,使用由浅入深的介绍方式,便于学生理解;教材注重有效性,呈现逻辑严密的定理证明与例题解答,提供层次分明内容丰富的习题,满足不同层次学生的需求。
本书主要包括 椭圆积分和算术几何平均迭代次数、算术几何平均迭代、雅可比三重积及其一些数论应用、高阶转换、模方程和代数近似值、代数函数的复杂性、初等函数的算法、一般方法及迭代、平方和的应用、经典近似、简化复杂性方法等内容。其具体内容如下:第一章, 椭圆积分与算术几何平均迭代;第2章,算术几何平均迭代;第3章,雅克比三重积及其一些数值理论应用;第4章,高阶转换;第5章,模方程和代数近似;第6章,代数函数的复杂性;第7章,初等函数的算法;第8章,常规方法与迭代;第9章,一些其他应用; 0章,处理初等函数的其他方法。本书适合于参加数学竞赛的选手以及数学爱好者参考使用。
《高等数学(经济管理类)(第4版)/普通高等教育“十一五”*规划教材》内容包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分及其应用、微分方程及差分方程初步、多元函数微积分学、无穷级数共9章,各节后配有习题,各章后配有总习题,并在书后给出了部分习题的参考答案与提示。为了提高读者运用数学知识处理实际经济问题的能力,书中还介绍了一定数量的经济应用例题。《高等数学(经济管理类)(第4版)/普通高等教育“十一五”*规划教材》结构严谨,逻辑清晰,叙述详尽,通俗易懂,例题较多,习题丰富,便于教与学。 《高等数学(经济管理类)(第4版)/普通高等教育“十一五”*规划教材》可供高等院校经济管理类各专业选用,也可供其他相关专业选用或供报考经济管理类硕士研究生的读者参考。
《高等数学(上下册)》是根据“高等学校本科教学质量与教学改革工程”的需要,参照高等学校数学与统计学教学指导委员会发布的《理工类本科数学基础课程教学基本要求》,参考《全国硕士研究生入学统一考试数学考试大纲》编写而成的。 《高等数学(上下册)》分上、下册出版,《高等数学(上下册)》为上册。上册内容包括:绪论,函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,定积分的应用,空间解析几何与矢量代数8章内容。书末附有初等数学常用知识、几种常用曲线及其方程、积分表、Mathematica软件包的常用系统函数。《高等数学(上下册)》每节后都配有精选的习题,既有基础题又有应用广泛的综合题。每章后还附有分层次教学测试练习题、Mathematica数学实验和数学欣赏。充分考虑分层次教学的需要,对全
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。
本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例 清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
本书主要讲述工程及物理中常用的数学方法,全书共分6章:第l章主要围绕广义函数介绍线性泛函分析的最基础的内容;第2章介绍积分变换中最重要的两种变换:Fourier变换与Laplace变换;第3章介绍二阶常微分方程的幂级数解,对常点和正则奇点附近的幂级数解的结构进行了详细的讨论,并介绍了涉及的几种重要的特殊多项式;第4章介绍稳态问题的解析方法;第5章介绍演化方程的解析方法,它们是热传导方程与波动方程的初值及初边值问题的解法;第6章介绍曲线坐标系中的分离变量法,这里只考虑球坐标系与柱坐标系中的分离变量法。全书突出广义函数在数学物理问题求解中的作用,并从微分流形的概念出发,对曲线坐标系中的微分算子给出了严格的推导,自成一休。