本书从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
《数学概览:代数基本概念》是沙法列维奇的经典名著之一,目的是对代数学、它的基本概念和主要分支提供一个一般性的全面概述,论述代数学及其在现代数学和其他科学中的地位。 《数学概览:代数基本概念》高度原刨且内容充实,涵盖了代数中所有重要的基本概念,不只是域、群、环、模,而且包括群表示、Lie群与Lie代数、上同调、范畴论等。它不是按照代数教科书的传统模式写的,而是反映了作者的强烈观点:“用基本例子的一批样本,它会表达得更好。这给数学家提供了动机和实质性的定义,同时给出这个概念的真实意义。” 书中共有精心挑选的164个例子和45幅图,给读者提供了物理背景和直觉,通过它们读者能够对抽象的概念产生更深的印象。相对而言,书中只有6个引理和104个定理,而且这些定理往往不加证明,只给出证明思路,这将
本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版30多年来多次改版,被mit、哥伦比亚大学、uiuc、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响,也是相关学科的主要参考文献之一。 本书侧重于组合数学的概念和思想,论述了鸽巢原理、排列与组合、二项式系数、容斥原理及应用、递推关系和生成函数、特殊计数序列、二分图中的匹配、组合设计、图论、有向图及网络、polya计数法等。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。 本书适合作为高等院校相关专业组合数学课程的教材。
全书共分两卷,涉及的面很广,可以说概括了1920?1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第一卷,分成11章:前5章以最小的篇幅包括了为所有其余各章作准备的知识,即有关集合、群、环、域、向量空间和多项式的最基本的概念;其余各章主要讲述交换域的理论,包括Galois理论和实域。
本书介绍算子代数与非交换Lp空间的基本内容,共分6章第1章和第2章阐述c*代数的基本理论,包括Gelfand变换、连续函数演算、Jordan分解和GNS构造等内容。第3章和第4章系统论述vonNeumann代数的基本理论,涵盖了核算子、算子代数的局部凸拓扑、Borel函数演算、vonNeumann二次交换子定理和Kaplansky稠密性定理、正规泛码等内容。第5章介绍非交换Lp空间的基本性质,包括非交换测度空间、非交换不等式、非交换Lp空间的对偶性、可测算子以及非交换测度空间的张量积等内容。第6章是若干例子,它们是前述各章内容的补充与综合应用。附录介绍Hilbert空间上紧算子的谱理论。全书内容简练、结构清晰,每个结果都给出详细的证明并且例题充分翔实。
交换代数与同调代数是代数学中的重要领域,也是代数几何、代数数论等领域的强大工具,因此是很多不同方向的研究生和研究人员所需要甚至的。本书针对各方面读者的基本需要,内容包括多重线性代数、交换代数(包括“硬交换代数”)与同调代数等方面的基本理论,在取材上只注意这些学科中重要且实用的基本内容,而不涉及很专门的课题。在内容的安排上,采取了“低起点,高坡度”的方式。在预备知识方面,只假定读者学过群论和域论(包括伽罗华理论),而从环的基本理论讲起。每一章后面都有若干习题,标有星号的习题在附录B中有解答或提示。
本书汇集了抽象代数中的大量问题和反例, 主要内容有群论、环论、域和伽罗瓦理论等. 书中通过例子对抽象代数的基本概念进行了比较仔细的对比, 考虑了很多重要定理在不同条件下是否成立的问题, 给出了抽象代数中很多值得深入思考的问题.
本书系统阐述线性模型的基本坪论、方法及其应用,其中包括理论与应用的近期发展。全书共分九章,第一章通过实例引进各种线性模型,第二章讨论矩阵论方面的补充知识,第三章讨论多元正态及有关分布。从第四章起,系统讨论线性模型统计推断的基本理论与方法,包括:最小二乘估计、假设检验、置信区域、预测、线性回归模型、方差分析模型、协方差分析模型和线性混合效应模型。
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系
本书英语原版*初由美国数学会(American Mathematical Society)出版,原书名是Combinatorial Problems and Exercises: Second Edition, 原书作者是 L szl Lov sz,原书版权声明是 ?1979 held by the American Mathematical Society.本翻译版由高等教育出版社有限公司经美国数学会授权和许可出版。
方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);de Morgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey 拓扑对偶空间理论是一个强有力的工具。为此,作者专门在第八章中给予详细的介绍,并附加一节介绍拓扑学的相关概念和基本性质,力求读者可以不借助拓扑学的教材也能理解、掌握相关的内容。 《格论导引/现代数学基础》内容适合不同层次的读者,可作为数学与计算机类专业本科生或研究生格论课程的教材或教学参考书。
本书是南开大学代数类课程整体规划系列教材的第一本,是在编者多年从事代数类课程及后续代数课程的教学过程中逐渐完成的。在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照代数学发展的主要脉络来安排本书的内容。全书分为8章,包括多项式、行列式、矩阵、线性空间、线性变换、线性函数与双线性函数、Euclid空间和二次曲面等。本书的编写原则是关注数学概念的起源,遵循数学理论的发展历程,强调理论的整体性和内在联系。书中配有大量编者精心挑选的习题和训练与提高题,既有助于强化读者对课程内容的理解,也为后续的代数学课程埋下了大量伏笔。
本书系统地论述了代数方程的Kuhn算法和增量算法(以Newton算法为其特例)、代数方程组和同伦算法以及同伦单纯轮迥算法。这些算法及其计算复杂性是应用数学领域中活跃的方向。本书作者按照由浅入深,从特殊到一般的原则,将这一方向的主要内容有机地组织起来,引导读者到此领域发展的前沿,因而本书是一本较为理想的入门读物。
单变量多项式零点问题本质上是代数的,而在多变量时则变为一种几何。《平面代数曲线》中,作者费舍尔从传统的平面代数曲线出发来进入整个学科,其核心内容是普吕克、克莱布施和诺特的经典公式,它们描述了曲线的各种整体和局部不变量之间的关系。在书中,读者将很快看到代数与几何、分析与拓扑的融合,这正是一种典型的复代数几何。作者特别注重具体的计算方法,全书包含了大量具体的例子和图示。 本书是一本非常**的代数几何入门书,预备知识只包括分析、代数和初等拓扑的基础知识。学习本书可以帮助建立几何直觉,这种直觉往往是产生*多的先进思想和技巧的原因,这在高维变量的学习中会用到。
莫宗坚、蓝以中、赵春来编著的《代数学(下修 订版)/现代数学基础》为《代数学》下册,主要讲述 交换代数的基本知识,内容包括环论、赋值论、 Dedekind整环及同调代数。这些都是交换代数的精华 内容,是学习代数几何、代数数论等现代数学的 基础。 本书内容丰富,直观性强,推理自然,解释详尽 。本书的独到之处是特别注重对于交换代数的背景以 及与其他学科的联系的介绍。书中精选了大量的例题 与习题。 本书可作为高等学校数学专业研究生教材,也可 供数学工作者参考。
本书是一本涉及代数学和编码理论的基础性读物。作者用两章篇幅,以尽量少的抽象数学概念和语言来阐述这些编码理论所需要的代数知识,然后介绍编码理论中的两类码,即第三章的伪*序列和第四章的纠错码。第三章完整地介绍了移位寄存器序列,特别是线性移位寄存器序列的理论。第四章介绍了几类重要的纠错码。后在第五章,介绍了编码理论中出现的几个代数问题。 第三版除校正修订本的排印错误,改进符号表示外,在内容上也做了重要的修改和增补,特别在第三章增加了序列线性复杂度的重要概念,并用这个概念简化了解线性移位寄存器综合问题的Berlekamp-Massey迭代算法的证明 本书可供工程类、信息类打算进入编码理论或密码理论的大学生、研究生作为教学参考书,也可供数学类专业学生和从事编码和密码工作的研究人员参考。
《代数配边理论(英文版)》是一部很难得的介绍代数配边理论的专著,内容精炼简短。《代数配边理论(英文版)》在讲述了quillen复配边方法后,接着在固定域的光滑变量范畴上引进有向上同调理论的观点,证明了这样一个理论范的存在性叫做代数配边。书中也包括了一些计算和应用案例。
《数论:从同余的观点出发》依据作者多年数论教学心得和研究成果写成。从同余的定义和观点出发,前五章依次讲述整除的算法、同余的性质、同余式理论、平方剩余、原根和n次剩余,后两章是有关素数幂模和整数幂模的同余式,不在通常的初等数论范畴却伸手可触。本书的另一特点是,每节内容都有引人入胜的补充读物,借此拓宽读者的知识面和想象力。这些读物或讲述了某一数论问题的初步知识,如佩尔方程和丢番图数组、阿廷猜想和特殊指数和、椭圆曲线和同余数问题、自守形式和模形式;或介绍了整数理论的新问题和新猜想,如完美数问题、格雷厄姆猜想、哥德巴赫猜想、abc猜想、3x+1问题、华林问题、欧拉数问题、素数链问题、卡塔兰猜想、费尔马大定理等及其延拓。此外,本书重视语言描写,对背景知识和图表予以关注。 《数论:从同余的观