《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当
费定晖、周学圣编演的《Ь.П.吉米多维奇数学分析习题集题解(第4版)》包涵了4462道数学分析相关函数习题,基本涵盖了这一学科的基础知识。其系统、全面、循序渐进的编排,使得本书长久以来成为了数学分析课
费定晖、周学圣编演的《Ь.П.吉米多维奇数学分析习题集题解(第4版)》包涵了4462道数学分析相关函数习题,基本涵盖了这一学科的基础知识。其系统、全面、循序渐进的编排,使得本书长久以来成为了数学分析课
本书介绍了多元数据分析的现代方法,主要讲解多元统计学中的方法及其应用。作者通过大量的示例说明每种技术的工作方式以及应用方法,还应用几何图形的方法来开发学生的直觉力,帮助读者对各种方法有一个比较形象的认识。书中大量习题和示例采用了来源于心理学、社会学和营销学等各个学科的真实数据。因为本书提供了各种类型的应用,所以适用于很多专业的教学,不仅适合营销学、组织行为学、会计学专业,还适合工程学、教育学、经济学、心理学、社会学和统计学等专业。
本书主要以李庆扬、王能超、易大义三位教授编写的《数值分析》(清华·第四版)的章节为顺序,以其内容为基础而编写的。共分九章,每章设计了五个板块: 一、重点内容提要,列出基本概念、重要内容简介,重要定理和公式,突出考点的核心知识。 二、知识结构图,用框图形式列出各知识点间的有机联系。 三、常考题型及典型精解,从多年教学经验出发,列出了常见考研题型和课程结业考试试题,并编入一些典型题,给出了详细解答。其中不少题目是对相应内容的进一步补充。 四、学习效果测试题,这一部分是为检查读者的学习效果和应试能力而设计的。通过测试,读者可以进一步加深对所学内容的理解,增强解题应试能力。 五、课后习题全解 对《数值分析》(清华·第四版)的课后习题作了详细解答。 本书从指导课程教学、学习和考
本书系统地总结了《数学分析》的基本知识、基本理论、基本方法和解题技巧,收集了大量的具有代表性的题目(其中大部分题目是来自于近几年一些高校的研究生入学试题),由浅入深地介绍了《数学分析》的解题思路和解题方法,在解题过程中启发读者进而打开思路并掌握技巧,使学生能够更好地融汇知识、理解概念和掌握方法,以提高学生分析问题和解决问题的能力。 本书包括:极限与连续、一元函数微分学、一元函数积分学、级数等8章内容。
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。
郑慧娆、陈绍林、莫忠息、黄象鼎编著的《数值计算方法(第2版)》是为高等学校信息与计算科学专业编写的教材。内容包含求解线性方程组的数值方法、求解非线性方程的二乘方法、矩阵特征值问题的数值方法、插值、逼近、数值积分、常微分方程的数值解法。作为教材,书中叙述较为详细,便于学生自学复习。其中一部分为可选择的内容,以满足不同学生的需要。对于数学、应用数学、计算机科学等专业相应的课程,同样可以选择《数值计算方法(第2版)》部分内容作为教材。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
本书通过八讲内容:连续统、极限、函数、级数、导数、积分、函数的级数展开和微分方程,概述了数学分析中易于了解和记忆的基本思想、基本概念和基本方法,使读者可在短时间内对数学分析的全貌有初步的了解, 并学会掌握数学分析的精髓。 本书虽是给那些想提高自己数学分析水平的工程师写的, 但对于经济学家、数学教师、数学系的学生等, 都具有非凡意义。