《非局部反应扩散方程》以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、单调迭代方法、常数变易法、上下解方法、多尺度分析、Turing分支理论、数值模拟等。《非局部反应扩散方程》所介绍的内容简明扼要,深入浅出,并尽量反映该内容的思想本质,从多个角度阐述了非局部反应扩散方程的核心内容。《非局部反应扩散方程》彩图可扫封底查看。
函数的凸性和广义凸性是运筹学和经济学研究中的重要基础理论.本书版系统地介绍数值函数的各种类型的广义凸性以及它们在运筹学和经济学中的一些应用.主要内容包括:凸集与凸函数、拟凸函数、可微函数的广义凸性、广义凸性与性条件、不变凸性及其推广、广义单调性与广义凸性、二次函数的广义凸性和几类分式函数的广义凸性.在此基础上,第二版增加了若干新的成果和使用较多的基本结果,调整了一些内容顺序,某些定理进行了简化证明等.
陈公宁教授是第6批博士生导师。 《陈公宁文集 解析函数插值与矩量问题》是《北京师范大学数学家文库》的4部。 《陈公宁文集 解析函数插值与矩量问题》是《北京师范大学数学家文库》的4部。 执教40多年,讲授数学系(含物理系)基础课程与选修课程多门,编教材2部,专著2部,发表学术论文70多篇。现为中国数学会会员,美国数学会会员,《Mathematical Reviews》评论员。学术研究内容主要是:算子理论与算子代数,矩阵值解析函数插值理论与应用,矩阵理论与应用。在全纯算子函数,有理插值,解析函数插值问题与矩量问题等方面多有建树。