偏微分方程是近处来发展迅速的一门科学,它在数学与物理的很多分支领域有着重要的应用。本书是一部的教科书,其中囊括了偏微分方程其本而重要的内容,如一维波动方程、热传导方程、半平面上的椭圆方程和Scurodinger方程描述模型,都是阶段相关专业必学的内容。此外本书还包含类型甚广的习题,部分习题配有答案以供参考。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供有
本书由在国际上享有盛誉的普林斯顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。关于本书的详细介绍,请见“前言”。本书已被哈佛大学和加利福尼亚理工学院选为教材。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。
函数的凸性和广义凸性是运筹学和经济学研究中的重要基础理论.本书版系统地介绍数值函数的各种类型的广义凸性以及它们在运筹学和经济学中的一些应用.主要内容包括:凸集与凸函数、拟凸函数、可微函数的广义凸性、广义凸性与性条件、不变凸性及其推广、广义单调性与广义凸性、二次函数的广义凸性和几类分式函数的广义凸性.在此基础上,第二版增加了若干新的成果和使用较多的基本结果,调整了一些内容顺序,某些定理进行了简化证明等.
本书内容包括椭圆边值问题的变分原理及其逼近、有限元方法、有限元误差估计、有限体积法和谱方法、分裂算法(包括区域和算子两类)、多重网格算法(包括几何和代数两类).每章后都附有习题,书末的附录包括本书所需的Sobolev空间知识,书中既有经典的有限元的理论、方法,又有计算方法的新进展;不但有算法的描述,还有算法的实现,可以满足各种读者不同的需要。 本书可作为理工科专业的研究生教材,也可供有关专业的教师和研究人员参考。
《非局部反应扩散方程》以反应扩散方程的基本理论为基础,以生物、物理和化学等自然学科为背景,将几类主要的微分方程、积分方程作为研究对象,介绍非局部反应扩散方程的基本理论、基本方法以及一些常见的应用。内容包括非局部反应扩散方程的行波解、对应柯西问题解的适定性以及斑图动力学理论;主要用到的方法有Leray-Schauder度理论、稳定性分析、单调迭代方法、常数变易法、上下解方法、多尺度分析、Turing分支理论、数值模拟等。《非局部反应扩散方程》所介绍的内容简明扼要,深入浅出,并尽量反映该内容的思想本质,从多个角度阐述了非局部反应扩散方程的核心内容。《非局部反应扩散方程》彩图可扫封底查看。
内容简介: 本书为《不定方程及其应用》的中册.详细介绍了非线性不定方程(组)及其解法,其中包括因式分解法、配方法、奇偶分析法、判别式法等,还包括利用完全平方数的性质、二项式定理、费马小定理求解非线性不定方程(组).内容详细,叙述全面.
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
本书内容包括椭圆边值问题的变分原理及其逼近、有限元方法、有限元误差估计、有限体积法和谱方法、分裂算法(包括区域和算子两类)、多重网格算法(包括几何和代数两类).每章后都附有习题,书末的附录包括本书所需的Sobolev空间知识,书中既有经典的有限元的理论、方法,又有计算方法的新进展;不但有算法的描述,还有算法的实现,可以满足各种读者不同的需要。 本书可作为理工科专业的研究生教材,也可供有关专业的教师和研究人员参考。
Zygmund教授的这部著作1935年于波兰华沙首次出版时,便在学术界确立了其典范地位。版虽然对细节问题没有展开详尽讨论,但对当时的主要研究成果都给予了简要说明。1959年,大学出版社分两卷出版了该书第2版,书中加进了自版以来在三角级数。傅里叶级数以及纯数学各相关分支中的研究成果,对原书做了重大扩充。而第3版是将第2版的两卷合在一起,芝加哥大学数学系主任Robert Fefferman还特意为其作序,介绍作者的生平轶事、对数学分析的贡献以及本书的学术价值。
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、γ函数和b函数、椭圆函数、cauchy型积分。上列最后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。