本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分) 中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似 ,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书的主要内容包括函数的极限与连续、导数与微分及其应用、不定积分与定积分及其应用等。本书突出 数学为根本,应用为导向 的特点,内容难度适宜,语言通俗易懂,逻辑清晰。本书每节重点内容均配套微课讲解视频,每章附有详细的思维导图,梳理脉络,易教利学。每节后附有 基础训练 与 提升训练 分层练习,每章结束配套总结提升习题,同时提供参考答案。本书配套习题题型丰富,满足学生参加高等教育自考、专升本等进一步的升学要求。本书可作为高职公共基础课教材使用,也可供感兴趣的读者阅读参考。
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
微分几何讲义(修订版)
本书通过图解的形式,在逻辑上穿针引线,系统地讲解了大学公共课 高等数学(微积分) 中涉及多元函数的知识点,涵盖了经典教材《高等数学》下册中的绝大部分内容。对于相关专业的在校生和考研学子而言,这些知识点是必须攻克的堡垒;对于相关领域的从业人员而言,这些内容则是深造路上不可或缺的基石。 继承 马同学图解 系列图书《微积分(上)》的独特风格,本书继续以 线性近似 为导向,深入浅出地探讨了多元函数的极限、微分、重积分及其计算方法、曲线曲面积分及其计算方法、无穷级数等内容。全书逻辑上层层递进,再辅以精心挑选的各类例题和生动有趣的生活案例,大大降低了学习门槛,让高等数学不再高不可攀。
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
“无穷小分析”这一名称是由欧拉创始的,这正是数学中“分析”一支名称的起源。本书作者所在的布尔巴基学派对20世纪的法国数学教学改革作出了重要的贡献,但也出现了一些消极影响,例如倡导独立子传统数学的所谓“新数学”;也有过只重视理论。而忽略计算的倾向。本书是作者为纠正这些偏向而设置的课程编写的。在本书所讲的无穷小计算中。使用不等式要比使用等式多得多,而且可用三个词作为本书的提要:求上昇、求下界、逼近。作者希望读者通过学习本书。不是只学会一些无穷小分析中运算的机械程序,而是还懂得有关“直观”的概念。 本书包含函数与映射的逼近及渐近展开式、复查解析函数的基础、一阶与二阶线性微分方程的近似解法与稳定性以及贝寡尔函数等。书中有不少新意。并附有相当数量的优秀习题。 本书可供大学数学专业
求非线性问题的解析近似解最著名的是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
本书主要介绍了复数、复变量、复变函数、微分方程、重积分、线积分、傅里叶级数、C.A.恰普雷金院士的微分方程近似积分法等知识,其中着重介绍了重积分及其在几何学中的应用,同时配有相应的例题及解答。 本书适合高等院校数学专业师生和数学爱好者参考阅读。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学