编者希望通过本的学习,读者除了掌握常微分方程的基本概念与解法外,能够对它有更多方面的了解。其中第三、六和七章可根据学时的多少和学生的水平取舍,一般说来,第七章是属于偏微分方程的内容。本书共有十一章,前六章或加上第七章是常微分方程的内容,第七章或第八章到第十一章是偏微分方程的内容,附录包括“常微分方程的初值问题解的存在、性定理”、“一阶偏微分方程初步”和“关于特征值问题的讨论”。
本书首先从均匀各向同性介质中弹性波动方程基本理论出发,给出波动方程的一般形式及其求解方法,为读者提供一个对所研究问题的基本描述。然后,基于一阶和二阶弹性波动方程,分别讨论了波动方程的交错网格有限差分方法、不规则网格有限差分方法,通过严格的公式推导建立不同格式的有限差分方程,给出了震源和边界条件的处理方法;针对均匀各向异性介质、非均匀各向异性介质、双相孔隙介质等复杂情况逐步展开探讨,给出并对各种差分格式作了稳定性和数值频散分析,导出了稳定性条件。在波动方程有限差分数值方法的理论分析基础上,本书还给出各种不同复杂介质模型的数值算例,并在书中提供相关源程序代码,便于读者迅速理解并掌握波动方程有限差分数值方法。本书的读者对象包括大专院校本科生、研究生,也可作为讲授弹性波动力学的教师
《粗糙微分方程及其动力学》主要介绍粗糙微分方程及其动力学方面的若干研究成果.《粗糙微分方程及其动力学》分为七章. 章介绍相关背景材料;第2章为《粗糙微分方程及其动力学》的基础,给出粗糙路径、高斯粗糙路径、受控粗糙路径的定义及相关性质;第3章介绍粗糙积分和粗糙微分方程的解理论;第4章介绍动力系统基本理论;第5章介绍有限维粗糙微分方程所生成动力系统的相关动力学——中心流形、吸引子以及动力系统的逼近;第6章介绍几类粗糙偏微分方程的基本解理论,内容涵盖特征线方法、Feynman-Kac表示、半群方法、变分方法;第7章介绍粗糙偏微分方程生成的无穷维动力系统的局部稳定性、局部不稳定流形以及粗糙噪声输运驱动的三维Navier-Stokes方程生成动力系统.
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
《边界积分-微分方程方法的数学基础(英文版)》主要讨论边界积分-微分方程的数学基础理论,主要聚焦于把传统的边界积分方程中的超奇异积分转化为带弱奇性的边界积分-微分方程。《边界积分-微分方程方法的数学基础(英文版)》简要介绍了分布理论,而边界积分方程方法基于线性偏微分方程的基本解,所以对微分方程的基本解做了较为详细的介绍。在余下的章节里,依次讨论了拉普拉斯(Laplace)方程、亥姆霍兹(Helmholtz)方程、纳维(Navier)方程组、斯托克斯(Stokes)方程等的边界积分-微分方程方法和理论;还讨论了某系非线性方程,如:热辐射、变分不等式和斯捷克洛夫(Steklov)特征值问题的边界积分-微分方程理论。,讨论了有限元和边界元的对称耦合问题。
Duringthelatterpartoftheseventeenthcenturythenewmathe-maticalanalysisemergedasthedominatingforceinmathematics.Itischaracterizedbytheamazinglysuccessfuloperationwithinfiniteprocessesorlimits.Twooftheseprocesses,differentiationandinte-gration,becamethecoreofthesystematiifferentialandIntegralCalculus,oftensimplycalled"Calculus,"basicforallofanalysis.Theimportanceofthenewdiscoveriesandmethodswasimmediatelyfeltandcausedprofoundintellectualexcitement.Yet,togainmasteryofthepowerfulartappearedatfirstaformidabletask,fortheavail-ablepublicationswerescanty,unsystematic,andoftenlackinginclarity.Thus,itwasfortunateindeedformathematicsandscienceingeneralthatleadersinthenewmovementsoonrecognizedthevitalneedforwritingtextbooksaimedatmakingthesubjectac-cessibletoapublicmuchlargerthantheverysmallintellectualeliteoftheearlydays.Oneofthegreatestmathematiciansofmoderntimes,LeonardEuler,establishedinintroductorybooksafirmtraditionandthesebooksoftheeighteenthcenturyhaveremainedsourcesofinspira-tionuntiltoday,eventhoughmuchprogressh
关于孤子(也称孤立子)理论中双线性方程的研究,国际上十分活跃,本书主要介绍处理双线性方程的技巧——“直接方法”。作者结合自己多年的研究成果,细致深入地阐述了求解非线性偏微分方程的解的过程,“广田方法”的要点,以及如何用Pfaff式统一显式表示多孤子解,由此提出了孤子方程可以看成Pfaff式恒等式的新观点。全书共分4章。章详细地描述“直接方法”的要点,以及用“直接方法”求解偏微分方程解的过程。第2章引入需要使用的数学工具,特别是行列式和Pfaff式理论,通过实例,深入浅出地介绍这些方面所涉及的技巧。第3章从直接方法的角度,讨论孤立子方程的数学结构。第4章详细讨论双线性Backlund变换。 本书可供高等院校和科研机构的数学、物理、力学、光学等专业高年级大学生、研究生和教师阅读,也可供从事非线性科学、理论物理、
本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
本书通过图解的形式,在逻辑上穿针引线,系统地讲解了大学公共课“高等数学(微积分)”中涉及多元函数的知识点,涵盖了经典教材《高等数学》下册中的绝大部分内容。对于相关专业的在校生和考研学子而言,这些知识点是必须攻克的堡垒;对于相关领域的从业人员而言,这些内容则是深造路上不可或缺的基石。 继承“马同学图解”系列图书《微积分(上)》的独特风格,本书继续以“线性近似”为导向,深入浅出地探讨了多元函数的极限、微分、重积分及其计算方法、曲线曲面积分及其计算方法、无穷级数等内容。全书逻辑上层层递进,再辅以精心挑选的各类例题和生动有趣的生活案例,大大降低了学习门槛,让高等数学不再高不可攀。
全书共分八章,、二、四章是基础知识,系统地介绍了曲线论和曲面论。第三章等距曲线是为解决凸轮型线设计问题而设的。第五章论述齿轮啮合问题。其余三章论述曲线的拟合与设计、曲面的相交与展开、曲面的拟合与设计。本书的着重点在于数学模型的建立。 本书可供机械制造等方面的工程技术人员以及应用数学工作者参考,也可作为高等院校有关专业的教材。
《希尔伯特空间问题集(第2版)》讲述了:Thisbookwaswrittenfortheactivereader.Thefirstpartconsistsofproblems,frequentlyprecededbydefinitionsandmotivation,andsome-timesfollowedbycorollariesandhistoricalremarks.Mostoftheproblemsarestatementstobeproved,butsomearequestions(isit?,whatis?),andsomearechallenges(construct,determine).Thesecondpart,averyshortone,consistsofhints.Ahintisaword,oraparagraph,usuallyintendedtohelpthereaderfindasolution.Thehintitselfisnotnecessarilyacon-densedsolutionoftheproblem;itmayjustpointtowhatIregardastheheartofthematter.Sometimesaproblemcontainsatrap,andthehintmayservetochidethereaderforrushingintoorecklessly.Thethirdpart,thelongest,consistsofsolutions:proofs,answers,orconstructions,dependingonthenatureoftheproblem
《赋范向量空间上的微积分(英文版)》适合高年级本科生或低年级研究生学习赋范向量空间上的微积分。书中不成熟的数学模型,还有基础的微积分和线性代数。在必要处对重要拓扑学和泛函分析也作了介绍。为了讲述赋范向量空间上的微积分在多变量函数基础微积分上的应用,《赋范向量空间上的微积分(英文版)》是为数不多的几本能够连接初级文本和文本的教科书。书中穿插的该理论非平凡解的应用以及有趣的练习为读者学习赋范向量空间上的微积分提供了动力。