《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《几何原本》是世界上最、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
几何难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。 本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。 本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
几何难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。 本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。 本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
《混沌与分形浅谈》就是一本通俗科学书,但又不是一般的通俗科学书。它所讲的问题不是只作泛泛的介绍,而是有一定的数学推导,推导过程详尽而浅显,使读者一读就能读懂,从而获得相应的知识。它既适合高中学生,也适合大学学生;既适合从事该方面研究的人作为人门读物,也适合不从事该方面工作的各类科学工作者作为拓宽知识的读物。
本书共分8章,章~第5章是概率论部分,内容有事件及其概率、变量及其概率分布、多维变量及其分布、变量的数字特征、大数定律与中心极限定理。第6~第8章是数理统部分,内容有数理统计的基础概念与参数估计、假设检验、回归分析与方差分析。 本书可作为高等院校工科各专业、经济类各专业概率论与数理统计课程的教材,也可供相关专业技术人员参考。
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WPMinicozzill发展起来的一些新的理论和方法。本书可作为微分几何专业的高年级本科生和研究生的或参考书,也可供数学和物理相关领域的研究人员参考。
《高等学校工科电子类规划教材:离散数学(第3版)》介绍计算机专业最需要的离散数学基础知识,共8章,包括数理逻辑、集合、二元关系、函数、无限集合、代数、格与布尔代数、图论等,并含有较多的与电脑科学和工程有关的例题和习题。《高等学校工科电子类规划教材:离散数学(第3版)》适合於高等理工科院校电脑科学、工程和应用专业作教材,也可供教师、研究生、高年级学生和有关工程技术人员作参考书。
《离散数学结构(第6版·翻译版)》可作为学生学习离散数学基本概念的入门书,并作为向更高级数学概念发展的基础。如果仅限于此,那么书中涉及计算机科学的一些特定应用的内容可以略去或者单独作为重要的例子选用。《离散数学结构(第6版·翻译版)》可作为计算机科学或者电子与计算机工程课程的教材,它也为计算机相关的许多基本概念打下基础,并且为这些概念提供延伸、发展和共同的主题。通过参考每章中与各章内容相一致的知识,教师很容易设计出适当的教学大纲。