平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的.《平面几何天天练(中卷·基础篇)(涉及圆)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(中卷·基础篇)(涉及圆)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
本书为三角形趣谈,全书共分10章,每章后配有练习题,书后附有习题参考答案。本书适合初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教师进修学院数学专业开设的“竞赛数学”课教材及*、省级骨干教师培训班参考使用。
代数拓扑 同伦理论描述了同伦理论。它得以兴旺发展,应归功于W. Hurewicz1935年引进同伦群以及S. Eilenberg用同伦群引进关于映射扩张的障碍类。同伦理论包括同伦群 n(X),相对同伦群、上同伦群、谱序列以及障碍理论。我们还详细讨论了第1同伦群(也称为基本群) 1(X),它在同伦群中性质知道*多,与它有关的研究成果也*多。我们将展示近代微分几何中曲率与基本群相关的一些成果。同调群与同伦群都是拓扑不变量,也都是同伦不变量。他们是比点集拓扑中得拓扑不变量(如连通性、紧致性)更难、更复杂、更高档次的不变量。我们将给出用连通性、紧致性不能判断不同胚、不同伦,而用同调群或者同伦群却能判断不同胚、不同伦的种种具体实例。*后,还给出了球面 Sn的弱冠同伦群的结果。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
如在变分法的进一步发展范畴中观察,辛几何的公理系统范围毕竟太窄,舍弃了很多东西。因此就要破茧,要向更广阔天地拓展。以下按前述辛的4点局限性,逐个讲述。本书破茧只讲简单基本的内容,只讲基本思路而不追求详细成果。不求高深,而求简明、易懂、实用。
《几何画板课件制作教程(第三版)》主要以范例的形式全面介绍新版几何画板软件的新功能、 新特点,并结合数学课件特点系统地介绍课件设计开发的方法和技巧。 结合开发过程挖掘几何画板的潜在功能及技巧,创意出许多新的知识内容表现方式和方法,将一个二维工具推广到三维空间的应用,极大地丰富了几何画板的创作空间。另外随书光盘中收录了大量的课件素材,《几何画板课件制作教程(第三版)》各章配有许多实例,并附有习题,供读者参考。
这本小册子也是一本问题集。前面有8章,每章都有许多例题与问题, 还有一章研究问题,一章未解决的问题。 章与章之间无前因后果的关系,而且除第1章(系统介绍一个问题)外,各章内部的例题亦无太多的联系。实际上组合数学,特别是组合几何,并无统一的方法,不同的问题往往需要进行不同的处理。这 不意味组合几何是一盘散沙,这各具个性的问题与方法,恰好形成组合几何鲜明的特点。正因为有众多的问题,而且没有固定的方法,组合几何吸引了许多数学家(包括专业与业余两方面)的浓厚兴趣。
《画法几何解题指导/高等院校教学辅助读物》是根据*高等学校工程制图教学指导委员会制定的《高等学校工程制图课程教学基本要求》,在参考了国内外相关院校该课程教学实践的基础上编写而成的。内容按教学顺序编排,包括:点,直线,平面,直线与平面及两平面间的相互关系,点、直线、平面的综合题,投影变换,曲线、曲面,立体的投影及其表面上的点线,平面与立体截交,直线与立体贯穿,两立体相贯,立体的表面展开,轴测投影与阴影。共十三章。每章均附有例题,以启发学生的空间思维,培养其正确的解题思路。 本书可供理工科高等院校(包括电大、职大、函大及网络学院等)与画法几何相关的学生使用,也可供中等专科学校制图教师教学时参考,还可给工程技术人员在图解空间几何时提供帮助。
勾股定理是人类文明史上光彩夺目、永不消逝的明珠。它是人类发现的个定理、个不定方程、证法多的定理。它引发了次数学危机,它开始把数学由计算与测量的技术转变为论证与推理的科学。本书介绍勾股定理的上述重大意义与文化价值,并给出30多种证法及其文化特色。
This book intends to lead its readers to some of the current topics of research in thegeometry of polyhedral surfaces with applications to computer graphics. The main feature ofthe book is a systematic introduction to geometry of polyhedral surfaces based on thevariational principle. The authors focus on using analytic methods in the study of some ofthe fundamental results and problems on polyhedral geometry, e.g., the Cauchy rigiditytheorem, Thurston's circle packing theorem, rigidity of circle packing theorems and Colin deVerdiere's variational principle. With the vast development of the mathematics subject ofpolyhedral geometry, the present book is the first complete treatment of the subject.本书是基于作者2006年在浙江大学的讲义,全面系统地介绍了基于变化原理的多面体几何学,并辅以计算机图形的应用。 多面体几何学近来发展迅速,本书是本全面介绍此内容的书籍,书中也包含了作者*的研究成果。作者着重利用分析的方法
本习题集内容有:正投影中点,直线,平面,投影变换,点、线、面与投影变换测验作业;平面立体、曲线曲面、曲面立体,平面、直线与立体相交,两立体相交,轴测投影,平面立体、曲面立体、立体与立体相交测验作业;标高投影,阴影,透视,透视测验作业,并附有部分习题解答。 本习题集供普通高等院校中,土木工程和建筑类各专业的“画法几何及工程制图”以及“画法几何及阴影、透视”课程使用。其中,正投影和轴测投影部分也可供其他工程专业选用。该习题集是同济大学出版社同时出版的21世纪高等院校土木建筑类专业教材《画法几何》的配套书。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。
几何学是贯穿人类文明古今之核心部分。本书先对中国和希腊的几何作简单介绍与比较,然后分别以几何学与天文学,对称性与小作用原理,从勾股弦到狭义相对论,大域几何、纤维丛与近代物理为主题简述其梗概,藉以初步体现几何学在理性文明中所扮演的角色。
尤承业编著的《解析几何》是学习几何学的入门教材。书中既讲解了空间解析几何的基本内容和方法(向量代数,仿射坐标系,空间的直线和平面,常见曲面等),等讲解了仿射几何学中的基本内容和思想(仿射坐标变换,二次曲线的仿射理论,仿射变换和保距变换等),还介绍了射影几何学中的基本知识,较好地反映了几何学课程的全貌。全书共分五章,每章内都附有一定数量的习题,书末附有习题答案和提示,便于读者深入学习或自学。《解析几何》突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用"实例-理论-应用"的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。因此,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何
“数学文化小丛书”是“十一五”国家重点图书出版规划项目之一,该丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些著名数学家的历史功绩和优秀品质等内容,适于包括中学生在内的读者阅读。 本书为“数学文化小丛书”之《并不神秘的非欧几何》。
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势.对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支——解析几何学——的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。 本书对大学、专科学校学生也有参考价值。
本书在介绍度量空间之后,引入拓扑空间,然后叙述拓扑空间的连续映射和同胚、紧致性、连通性、乘积空间和商空间;从单形入手介绍单纯复形和多面体的概念和性质,重心、重分和单纯逼近存在定理;基本群定义及其同伦等价不变性、计算方法和一些计算结果的应用;在单纯同调群之后介绍奇异同调群及其同伦等价不变性、同调群的正合序列、切除定理。第二版在*版的基础上,对部分内容作了修饰,把原来作为习题的一些延伸内容补充到正文里面,并增加了一些有针对性的习题。
《介绍丛书:分形学》2000年首次出版,曾被翻译成多国语言出版发行,丛书的全球销量已达到24亿,本书在我国首次翻译出版。 浮云、繁星、麦田怪圈和奔流是怎么国事?这些大自然中的奥秘如何解答? 分形学无处不在,它的研究被应用于环保、信号处理、艺术创作甚至宇宙探索当中;它是数学、艺术、哲学甚至宗教的交集。 在技术的发展过程中,许多传统的科学难题,由于分形的引入而取得显著进展。本书是轻松有趣的分形学入门读物。分形学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。本书正是向大众介绍这一奇异学科的敲门砖和引路人。本书的插画诙谐生动,语言通俗易懂,翻译精准到位,是带你入门的*选择,本书出自分形极客之手,深受国外读者青睐
几何三大难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学。因此了解这些问题以及了解这些问题是如何解决的,对学数学的人和对数学感兴趣的中学生来说是很有意义的。本书以很少的篇幅,从历史的发展的角度展开,穿插了一些历史资料和生动的故事。另外作者设计了一系列的习题,让读者参与到问题的解决中去。本书自1969年出版以来,直到现在仍是一本很受读者欢迎的读物。本书适合对此感兴趣的大学生,中学教师,以及有较好代数和几何基础的中学生等阅读。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及*。省级骨干教师培训班参考用书。
《离散数学》是创新方法工作专项项目“科学思维、科学方法在高等学校教学创新中的应用与实践KM教学法的研究与实践”的主要研究成果之一。本书共分4篇:篇为数理逻辑,包括命题逻辑和谓词逻辑;第2篇为集合论,包括集合、二元关系、函数、集合的基数;第3篇为代数结构,包括代数、群论初步、格与布尔代数;第4篇为图论,包括图的基本概念、图的连通性、图的矩阵表示和特殊图等。本书每章均有本章小结、相关知识点的思维形式注记图和扩展阅读,每篇均有本篇知识逻辑结构图,力图在内容、体例等方面形的模式。 本书可作为高等学校计算机及相关离散数学课程教材,也可供相关的教学科研人员与工程技术人员参考。