《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(上卷)(基础篇)(直线型)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(上卷)(基础篇)(直线型)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(下卷)(提高篇)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(下卷)(提高篇)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
波拉索洛夫编著的《俄罗斯立体几何问题集》提 供了俄罗斯在中学,其中包括在专门化的学校学习的 几乎所有立体几何的问题及 各题的提示。 本书适用于大学、中学师生和数学奥林匹克选手 及教练员参考阅读。
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求.本书选材于全国各地历年中考压轴几何题,各届初 中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练 和实战演练于一体的培优教程 本书适用于参加初中、高中数学竞赛的学生学习和训练,对参加大学自主招生、高考 的学生及初中、高中、大学数学教师也有一定的参考价值
内容简介:本书从14个方面介绍了各类范例200余道一题多证(解).主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧. 本书内容适合初高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的 竞赛数学 或 初等数学研究 等课程的数学参考书.
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
点集拓扑、微分拓扑和代数拓扑是拓补学中三个重要的分支。代数拓扑是代数与拓扑的结合,是代数在拓扑中的应用,也是拓扑在代数中的应用。代数拓扑的特征是借助于代数的对象与方法,如群、环、同态、同构等进行研究拓扑空间在连续形变下得不变性质。代数拓扑与微分几何、微分方程、代数、泛函分析、大范围分析密切联系并有广泛应用。代数拓扑同调理论,包括复形的单纯同调群Hn(X),上同调群Hn(X),Euler示性数、上同调环,同调序列,切除定理。同调群的拓扑不变性与伦型不变性,万有系数定理和闭流形的Poincare对偶定理。在此基础上,进而引进拓扑空间的奇异链复形、奇异同调群及相应于复形的许多相关定理,并证明了多面体的单纯同调群与奇异同调群的同构性。*后,还给出了同调群论的若干应用。
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集。
代数几何是数学中*古老和发展比较快的学科之一,它与投影几何、复分析、拓扑学、数论以及数学领域的其它分支有着紧密的联系。然而近些年代数几何不论是风格还是语言都发生了巨大的变化,本书展示了相关理论的主要研究结果和计算工具的发展。本书有如下特点:(1)本书以研究具体几何问题和特殊类代数簇为中心来展开。(2)注重实例的复杂性与通常模式的对称性这两者之间的均衡,在选择的论题和叙述顺序中,书中尽量体现这种关系。(3)尤其对于涉及到的 复杂 结果,都有充分完整的证明。目次:多复变初步;复代数簇;Liemann曲面和代数曲线;深入技巧;曲面;留数;二次线丛。
本书是我社正在开发的《美国数学会经典影印系列》中的一本,美国数学会的出版物在国际数学界享有很高声誉,出版了很多影响广泛的数学书。 十三五 期间计划引进的该学会的图书系列涵盖了代数、几何、分析、方程、拓扑、概率、动力系统等所有主要数学分支以及新近发展的数学主题。 本书源于以解析几何和代数几何为主题的PCMI暑期学校的一系列讲座。该系列讲座旨在介绍解析几何和代数几何中*进展背后所运用的高级技巧。讲座包含了许多说明性的例子、详细的计算和对所提出的主题的新观点,以便增强非专业人士对这些材料的理解。
内容简介:本书分上、下篇,以66个专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书。
在第1章中编者呈现了最主要的理论,并给出大量的例题,这有助于解决后面的问题。第2章提出了一些问题,要解决这些问题,你需要对在 理论与例题 这一章中出现的材料有一个基本的理解。在第3章中你将会发现一些既需要更深刻理解这一理论的问题,也需要提升在关键概念之间建立关联的能力。在第4章和第5章中编者将提供这些问题的对应解答。 本书适合于正在接受数学奥林匹克训练的学生以及期待在三角学及其相关领域提升能力的读者参考阅读。
几何新方法和新体系第二版张景中著北京内容简介本书分上下两篇.上篇通俗地阐述了作者所开创的几何解题的“消点法”.用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假.命题成立时还能够产生人容易检验和理解的证明,即可读证明.书中先引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理.接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方法.此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法以及复数法的基础上也能建立消点法.下篇则对几何公理体系提出了新的见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公理体系的等价性.
《在陈省身先生影响下的微分几何》是献给20世纪伟大的几何学家之一陈省身先生100周年诞辰的纪念文集。它包括了世界各地的数学家、特别是华人数学家的优秀研究文章。这些文章评述了陈省身先生所研究领域的目前状况,并讨论未来的发展方向,r8容涵盖了Gauss—Bonnet公式、共形几何、CR几何、流形、Ricci流、Einstein度量、等参超曲面、比较定理.Tits厦等方面。 《在陈省身先生影响下的微分几何》适合研究生和年轻的数学工作者阅读,其他读者亦可从中找到相关领域的有价值的信息。
基于激光点云的复杂曲面物体3D建模关键技术,是当前数字摄影测量与计算机视觉交叉学科领域的热点和难点研究问题之一。研究的主要目标是根据摄影测量和计算机视觉的相关理论与处理手段,利用复杂曲面物体的点云数据,为基于特征关系图匹配的曲面物体识别建立模型库。本书较详细地介绍了复杂曲面物体激光点云3D建模关键技术,探讨多视角点云数据配准、点云数据(深度图像)区域分割、曲面参数方程拟合、特征提取与特征关系图表达等系列关键技术中涉及到的核心问题。本书是作者十余年来从事基于激光点云的复杂曲面物体3D建模关键技术研究和对研究生教育的基础上编写而成的,书中不但包括了首次接触本学科的读者所需要具备的基础知识,而且较系统地探究了近年来外复杂曲面物体3D建模关键技术研究的重要成果。本书富有实验数据和参考实验结果,能
《光滑流形导论》是一部介绍光滑流形的入门教材(全英文版)。是针对已经对一般拓扑、基本群、覆盖空间以及基本的线性代数与实分析有较好掌握的本科生和研究生。旨在让学生和相关的工作人员熟练地掌握和运用流形这个重要的数学工具。《光滑流形导论》主要介绍了光滑结构,切向量和余向量,向量丛,李导数,浸入和嵌入式子流形,李群和李代数。在讲述上运用图形以及直观的讨论使得内容尽可能的清晰易懂,更重要的是讲述如何用几何的方法思考抽象概念;同时,现代数学方法提供的有力工具得到了充分展示。《光滑流形导论》还提供了一些很重要的流形能够提供的几何结构的例子。
本书提供给读者一个对复分析的深刻理解以及这门学科是如何融入数学的。 该书是从伊利诺伊大学香槟分校的校园荣誉计划中的讲座发展起来的。这些课程的目标是让学生体会到当以复分析的观点对待许多数学和物理问题时,问题便被神奇地简化了。此书从初等的水平出发,但也包含了高级的材料。 本书的前四章给出了对复分析及其许多初等但非寻常应用的一个导引,第5 到第7 章发展了Cauchy理论,包括一些引人注目的对于微积分的应用。第8 章则探讨了一些吸引人的论题,使全书连成一个有机的整体并对深入研究打开了大门。 280 个习题囊括了从简单计算到难解之题。这种多样性使得此书独具吸引力。 只阅读前四章的读者将能够在初等情形中应用复数。研读整本书将能了解基本的单复变论并将目睹它作为一个整体融合进数学中。数学研究工作者也会发
Moduli Spaces of ProjectiveManifoldsGeometric Analysis combines differential equations anddifferential geometry. An important aspect is to solve geometricproblems by studying differential equations.Besides some knownlinear differential operators such as the Laplace operator,manydifferential equations arising from differential geometry arenonlinear. A particularly important example is the Monge-Ampreequation. Applications to geometric problems have also motivatednew methods and techniques in differential equations. The field ofgeometric analysis is broad and has had many striking applications.This handbook of geometric analysis provides introductions to andsurveys of important topics in geometric analysis and theirapplications to related fields which is intend to be referred bygraduate students and researchers in related areas.
近二十多年来,芬斯勒几何的研究取得了全新的实质性进展。芬斯勒几何的观点和方法,不仅与数学的其他分支,如微分方程、李群、代数学、拓扑学、非线性分析等密切相关,而且在数学物理、理论物理、生物数学、控制论、信息论等其它学科中得到越来越广泛的应用。因此,无论在理论研究上还是在实际应用上,芬斯勒几何都日益显示出它的勃勃生机和巨大价值。 为了满足国内大学高年级学生和研究生的教学需求,在多年教学实践的基础上,作者编写了本书。全书共分8章,包括微分流形、芬斯勒度量、联络和结构方程等。本书的特点是以张量分析为主要工具,系统介绍芬斯勒几何的基本概念和基本方法,尽可能兼顾到经典理论和*进展的内容,使读者在学完本教程后能独立从事芬斯勒几何的研究。 本书可作为大专院校数学科学的高年级选修课及研究生的教学