“高等运筹学”是系统科学、应用数学、管理科学与工程、信息科学等众多学科博士、硕士研究生的一门必修的应用基础课程. 通过本书的学习, 使学生比较系统地掌握运筹学的基本理论, 了解前沿领域与某些应用背景, 培养学生应用课程所学知识解决现实工程和管理中碰到的最优化、平衡、综合评价、决策分析等问题, 使学生能够根据具体的应用问题建立运筹学模型, 提高学生的理论分析能力、数学建模及求解能力. 本书是在本科“运筹学”课程基础上, 提高理论起点, 以泛函分析、凸分析、高等概率统计为数学基础, 结合经济学、金融学、风险管理、多目标决策、多因素评价、计算机网络、无线通信等相关学科分支的应用背景, 全面提高学生的理论基础和建模水平. 内容主要包括Hilbert空间上的最优化理论、随机决策基础、效用理论、多准则决策与群决策、博弈论和复杂
"Stochastic optimization in continuous time"(AuthorFwu-RanqChang)is a rigorous but user-friendly book on the application ofstochastic control theory to economics. A distinctive feature ofthe book is that math-ematical concepts are introduced in alanguage and terminology familiar to graduate students ofeconomics.
线性锥优化是线性规划的延伸,也是非线性规划,尤其是二次规划的一种新型研究工具,其理论性强,应用面广,值得深入研究。本书系统地介绍了线性锥优化的相关理论、模型和计算方法,主要内容包括:线性锥优化简介、基础知识、**性条件与对偶、可计算线性锥优化、二次函数锥规划、线性锥优化近似算法、应用案例和内点算法软件介绍等。《BR》 本书不仅包含了线性规划、二阶锥规划和半定规划等基本模型,还引进二次函数锥规划来探讨更一般化的线性锥优化模型。同时,在共辄对偶理论的基础上,系统地建立了线性锥优化的对偶模型,分析了原始与对偶模型之间的强对偶性质。本书的主要内容来源于我们研究小组近些年工作总结,一些研究结果还非常初始,仍然具有较新的研究价值和可能的扩展空间。
由中国运筹学会编著,介绍了运筹学学科发展情况,并对本学科的进展做了全面而准确的总结。学会对所负责的学科发展研究初稿进行研讨及学术交流后,为研究成果的后完成提出实质性修改意见和建议。整套丛书的特点:,确保权威性,注重研究工作的质量,确保研究报告为反映各学科发展情况的*权威性的指导性丛书;第二,体现前瞻性,学科涉及面较大的不要求面面俱到,应注重体现*热点、前瞻和重大学术进展;第三,将2007年第四季度学科发展的内容纳入进去,做到严谨、完整;第四,时效性好;第五,整体性强。
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第2辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的优秀论文,对相关的问题做深刻细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第2辑)》针对2005年及2006年MCM/ICM竞赛的6个题目:洪水估计问题、高速公路收费亭设置问题、不可再生资源的管理问题、灌溉喷洒系统设置问题、机场轮椅配置问题以及艾滋病毒防控资源分配问题等进行了解析与研究。 本书内容新颖、实用性强,目前国内尚无同类作品。本书可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时也可供研究相关问题的教师和研究生参考使用。
本系列丛书是以美国大学生数学建模竞赛(MCM/ICM)题为主要研究对象,结合竞赛特等奖的论文,对相关的问题进行深入细致的解析与研究。本辑的主要内容包括:棒球 *击球点 问题、重新平衡受人类影响的生态系统问题、泛太平洋垃圾带问题、犯罪情报分析的建模问题、交通环岛的优化设计问题和能源与移动电话问题。 本书可作为指导大学生学习和准备美国大学生数学建模竞赛的主讲教材,也可作为大学生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时可供研究相关问题的人员参考使用。
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第1辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的优秀论文,对相关的问题做深刻细致的解析与研究。本辑针对2007年及2008年MCM/ICM竞赛的6个题目:冰盖融化问题、数独谜题生成问题、医疗保健系统评估问题、选区划分问题、飞机就座问题以及肾移植问题进行了解析与研究。 《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第1辑)》内容新颖、实用性强,目前国内尚无同类作品。本书可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时可供研究相关问题的教师和研究生参考使用。
本教材充分考虑到运筹学的学科特点,问题都来源于当今信息时代的实际案例,并上升到理性,再回到实践中去,解决实践中的问题。积极尝试运用新的思维和科研成果改进教材内容。根据运筹学课程在相关专业能力体系中的作用,希望本教材能够在知识维度提供优化理论和方法,在能力维度能够培养学生解决实际优化问题的能力、推理和分析能力、定量分析问题解决问题的能力、系统分析问题的能力;在态度维度能够更理性的认识问题,学会用数学的语言来描述一个实际问题。本书适合作为普通高等院校开设“运筹学”课程的教材或参考书。