本书是在贯彻落实*《高等教育面向21世纪教学内容和课程体系改革计划》的要求精神及第1版的基础上,按照工科及经济管理类“本科数学基础课程教学基本要求”并结合当前大多数本专科院校的学生基础、教学特点和教材改革精神进行编写的,全书以通俗易懂的语言,全面而系统地讲解数学实验的内容,全书共分7章,第1章是绪论;第2-5章是基础实验部分,内容包括一元微积分实验、多元微积分实验、线性代数实验和概率论与数理统计实验;第6章是综合实验;第7章是数学建模初步,每章都以实验的形式将有关内容与MATLAB相结合,达到理论与实践的统一,便于读者学习和上机实验,每节后面有“练习题”,每小节(或节)的例题(或实验)前有简要的“实验目的”,并在附录中有MATLAB的基本操作。 本教材理论系统,举例丰富、新颖,讲解透彻,难度适宜,
四元术是元朝朱世杰提出的建立和解答多元高次方程组的方法,它代表了中国古代数学的杰出水平。本书从沈钦裴四元消法法则的统一表示人手,把沈钦裴四元细草用吴消元法的笔算形式表示出来,找到多项式方程组的一般解法。 本书适合数学史工作者、大学数学系师生及计算机专业的师生、中学数学教师及数学爱好者阅读。
数值分析是理工科各专业的一门专业基础课。全书由十章组成,主要内容包括:高次代数方程与超越方程数值解法,解线性方程组的直接法与迭代法,矩阵特征值与特征向量的数值解法,多项式插值与函数*逼近,数值积分与数值微分,常微分方程初值问题数值解,应用软件MATLAB和MATHEMATICA简介等。主要介绍计算机常用算法的基本思想、误差分析及算法的优缺点,以便于读者在应用时选取适当的算法。 本书在内容上既可以满足计算机专业和计算机信息与技术专业本科生的系统学习,也可以作为非计算机专业本科及研究生教材,同时可为广大科技工作者提供参考。
The use of the preconditioned conjugate gradient method with circulant preconditioners to solve Toeplitz systems was proposed in 1986. In this short book,the author mainly studies some well-known preconditioners from a theoretical viewpoint. An application of preconditioners to systems of ordinary differential equations is also discussed. The book contains several important research results on iterative Toeplitz solvers obtained in recent years. It could be accessible to senior undergraduate students who, in various scientific computing disciplines, have a basic linear algebra, calculus, numerical analysis, and computing knowledge.The book is also useful to researchers and computational' practitioners who are interested in fast iterative Toeplitz solvers. Dr. Xiao-Qing Jin is a Professor at the Department of Mathematics, University of Macau. He is the author of 4 books and over 70 research papers. He is also a member of the editorial beards of Journal on Numerical Methods and Computer Applications, Numeri
本书是为高等学校工科类专业计算方法课程编写的教材。本书共分六章,主要内容包括绪论,非线性方程的数值解法,线性方程组的数值解法,插值方法,数值积分及常微分方程初值问题的数值解法。 该教材以介绍通用数值算法为基础,同时引入现代算法的内容,书中既注重算法理论的严谨性,又突出算法设计的原始思想与实现技巧,从而使算法理论与算法实现形成一体化。 本书可作为高等学校工科类各专业的教材,也可供科技人员与工程技术人员参考。
本书根据普通高等理工科院校“计算方法”和“数值分析”课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分、常微分方程初值问题的数值解法等。书中内容力求精炼充实、由浅入深,从典型算法与实际问题着手,循序渐进,简洁易懂,便于教学与自学。每章都有较明确简洁的算法与实例,着重训练读者的计算能力,培养读者解决实际问题的方法和创新能力。每章后还配有适量的习题,便于读者掌握和巩固重点内容、算法与基本思想。
本书主要研究了求解多目标优化问题的人工蜂群算法及混合遗传算法,针对不同的测试问题,建立了相应的多目标优化算法模型,并从多个角度与相关算法进行了试验对比分析。在多目标人工蜂群算法方面,设计了一种多目标人工蜂群框架,并针对框架的各部分,实现了多种策略,从而衍生出多种多目标人工蜂群算法,并将其应用于求解具有连续空间的函数优化问题和离散空间的面向QoS的无线网络路由优化问题。在多目标混合遗传算法方面,对已有的几种被广泛认可的遗传算法及PLS算法进行了研究,提出了几种改进的混合多目标遗传算法,并利用提出的算法求解了光网络优化问题及服务选取问题。
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。