★张益唐、吴军力荐! 国民教师 李永乐数学科普作品! ★神奇提分、神奇爱上数学!让孩子更接近自己的名校梦! ★不一样的数学思维,让孩子鹤立鸡群 ★开拓数学眼界,训练数学思维,感受数学之美 ★开启青少年数学思维,开拓数学视野 ★不枯燥、不无聊,100 脑洞大开的问题,神奇的数学太好玩了! ★严谨的解读 有趣的生活案例,数学竟然如此有趣! 《神奇的数学》,6大数学门类,100 脑洞大开的问题:考清华和中500万元哪个更难?葫芦娃救爷爷,为啥一个一个上?一个西瓜切4刀,最多有几块?如何公平地切蛋糕?囚徒困境是怎么回事?香蕉皮和橘子皮,谁能展成平面? 数学从未如此好玩!
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成就一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成就。 在书中所描述的这些令人神往的人物中,艾萨克 牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲 热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米 诺特被阿尔伯特 爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟 拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍了其他
本书为著名理论物理学家大栗博司先生写给女儿的数学启蒙书,书中以用 数学语言 解读自然为线索,突破传统数学教育的顺序和教学方式,用历史事件、生动故事以及比喻直接讲解数学核心概念的原理与相关体系,并且讲解了把数学作为一门 语言 、用数学探索自然不可见结构的思维方式,是重新认识和理解数学的科普佳作。增订版对各章内容进行了补充与扩展,使本书内容更为翔实。
《超图解秒懂数学》采用独特的图解方法阐释数学的基本原理,将抽象的数学知识形象化、生活化、趣味化,图文并茂,轻松培养读者的数学思维和图形化思维能力。全书分为数与式、图形、方程式与函数、概率与统计四大版块,全面涵盖了从小学到高中的数学基础概念,并配有各年级学习内容对照表,方便读者按需学习。 本书在编排上充分考虑到各类读者群体的需求。对小学生来说,父母的辅导不仅能够提升他的成绩,而且能够加深亲子感情,因此对于加法、减法、分数、小数等小学知识,本书运用全彩的数字、有趣的插图和例题,吸引孩子的兴趣,让父母和孩子都能够快乐地沉浸在数学世界中。对初高中生而言,想要取得好成绩,自学不可或缺,因此对于方程、函数、概率、微积分等初高中数学知识,本书利用简单的插图、生活化的例题、清晰的
《毕达哥拉斯》趣味数学杂志创刊60余年,在荷兰和比利时家喻户晓。这本刊物不遗余力地证明:数学绝对不是一门乏味的学科。 在这本趣味无穷的数学解谜书中,物理学家扬 吉什拉尔(Jan Guichelaar),数学家保罗 勒夫里(Paul Levrie)和数学家罗斯马赖 范霍梅里希(Roosmarij Vanhommerig)精选了《毕达哥拉斯》有史以来超级经典和超受欢迎的数学谜题,科学标识每一题的类型和难度,穿插讲解趣味数学知识,帮助中小学生和数学爱好者塑造敏锐的数学思维,激发创造力,开拓数学眼界,分享对于数学的纯粹热爱。
本书是一部短文集,文章以各自英文标题的首字母按照A到Z的顺序排列,每一篇短文都讲述了一个特定的数学主题,介绍了数学世界不可不谈的伟大定理、难题、争论和不解之谜。作者以简单清晰的笔触,带领读者跨越历史,探索算术的起源、圆的奥秘、无穷级数的难题、无理数的怪异特征等话题,讲述了数学大师们的生活轶事和神秘经历,勾勒出数学的概貌。本书荣获美国出版商协会的 数学佳作奖 ,适合所有喜爱数学知识和历史故事的读者阅读。
本书向读者介绍了代数学自诞生以来的发展历程,内容涵盖代数学中的重要概念,如未知量、抽象概念、方程、向量空间、域论、代数几何,等等。作者以诙谐的笔触展现了代数几千年发展史中的重大事件和核心人物,并介绍了代数的基本知识,以代数这一重要而有趣的角度呈现数学思维的戏剧性进化历程,向读者展现了一种感知世界的全新方式。作者凭借历史学家的叙事能力,带领读者踏上一段令人称叹、充满挑战的数学之旅。本书适合对代数学及其历史感兴趣的读者阅读。
莱昂哈德 欧拉的多面体公式 V-E F=2 被数学家们誉为第二优美的数学定理。从足球和宝石到美妙的穹顶建筑,这一公式描述了许多物体的结构。本书围绕欧拉多面体公式及其数学思想,从古希腊数学讲起,直到当代拓扑学的前沿研究,介绍了这一公式的发现及其对拓扑学研究的深远影响。书中包括丰富的插图与例子,展示了多面体公式的许多优雅而出人意料的应用,例如说明为什么地球上总有一些无风的地方,如何通过数树来测量林地的面积,以及为任何地图涂色需要多少支蜡笔,等等。在书中,读者将看到一群质疑、完善多面体公式和为这个非凡定理的发展做出贡献的杰出数学家,在数学史的长河中,他们都多面体的研究和拓扑学的发展做出了自己的贡献。 本书适合对数学,尤其是拓扑学及数学史感兴趣的读者阅读。
本书从历史的角度出发,围绕着促成了数学之美的圆周率的无数主题,介绍了数学史上人类对圆周率的研究起源和研究历程、圆周率算法的发展;还介绍了圆周率的一些奇特的数学性质、文化艺术中出现的圆周率元素、圆周率的应用、关于圆周率的悖论等。旨在向读者说明,圆周率不是一个普通的数字。相反,它是一个特别的数字,会在最意想不到的诸多地方出现。读者还将会发现,这个数字在整个数学中是多么有用。本书以一种通俗易懂的方式向读者介绍,从而使读者意识到在这个极为重要的数字的研究中所具有的固有的美。
《纯数学教程》详细梳理了经典数学相关概念,其知识框架清晰而有条理,囊括了数论、代数、几何和拓扑学等多个领域。全书共分十章,每一章内容循序渐进、层层深入,从基础的核心概念讲起,提供严谨的证明过程,以及丰富的例子和习题。 第一章至第三章介绍了实数、复数等概念,其中,第二章着重通过图片展示的方式,直观地分析与讲解抽象的函数。第四章和第五章引入了极限、连续、振荡等概念。第六章至第八章详细介绍了微积分的概念和相关定理证明,如中值定理、达布定理等,此外,还论述了收敛的判别法。第九章和第十章,从多重角度出发,给出了指数函数、对数函数和三角函数的定义及其应用。
统计学之所以被滥用、误用,其实是因为它太有用,在某种程度上,可以说它改变了我们处理问题的方式。 这是一部统计学的史诗。一百多年来,统计学从无到有,以至于蔚为壮观。一部统计学的发展史,就是一部不断革新现有科学体系的历史。本书深入浅出地描绘了这一历程,为读者奉献了一场思想的饕餮盛宴。 这是一部关于叱咤风云的统计学学霸的传奇故事书。回望那段波澜壮阔的时代,一张张脸孔如流水般掠过。在英国剑桥的某个午后,有位女士声称,把茶加到牛奶里,和把牛奶加到茶里,两种方法调出来的下午茶喝起来味道不同。在座的科学家都对她的说法嗤之以鼻,但有位来访的瘦小绅士,R. A. 费希尔,提议要用科学的方法,来检验这位女士的假设 本书以这位喝下午茶的英国女士为起点,带领读者一一回顾 统计 这门应用范围最广的科学,了解若干重
《数学的奇境》本书从数的起源开始,带领读者进入数学的世界,透过数学两大领域代数与几何的曲折发展历程,体味群星闪耀的数学史上天才式数学家对数学的不灭贡献,数学家的奇闻趣事、新发现的艰辛历程、迎难而上的科学家精神贯穿全书。每一个定理、定律、命题、公式的发现的背后都有精彩的故事,每一个猜想的证明都闪耀着人类智慧。但本书不只是停留在数学故事的叙述上,更要还原数学发现的过程之美,公式的推导,猜想的证明,力图给读者思维的快感,领略数之美、式之美、理之美、形之美,进而爱上数学。本书主要面向中小学生和数学爱好者,目的是让读者了解数学是从哪里来的,怎么来的,激发他们对数学的兴趣和培育数学核心素养。
本书带领中小学学生进入了奇妙的数学世界:北京大兴国际机场在设计中运用了哪些几何学知识?魔术师是如何仅用一副扑克牌,将数学知识玩得 炉火纯青 的?台球、足球、篮球,这些运动中蕴含着怎样的数学原理?数学家是如何研究并计算出 的? 这些问题的背后都隐藏着神奇的数学奥秘。 本书从数学在工程设计中的巧妙运用、破解神秘的数字密码、玩转生活中的趣味数学、数学研究中的奇妙探索四个方面给中小学学生呈现出数学在我们生活以及科技发展上所起的重要作用。希望阅读本书的中小学学生能够从中了解数学学习的意义,培养学习数学的浓厚兴趣!
《数学的精神、思想和方法》是非常有影响的数学教育名著,精辟论述了数学的精神实质、 思想、方法,为读者勾画出了整个近代数学的沿革和它多姿多彩的面貌。 对于如何向学生传授数学的精神、思想和方法,作者提出了很多有价值的见解。《数学的精神、思想和方法》风趣生动,仿佛是一位长者在讲述一个曲折、奇妙又颇具启发性的故事。《数学的精神、思想和方法》是长销不衰的数学启蒙佳作,深受数学教师和数学爱好者的欢迎。
教师应该创造一个个的学习环境,让学生自己去冒险,探讨数学知识。 这本书里面的教学案例就是以学生和现实中的实物为教具,每个案例都是教师创造一个个的学习环境,让学生自己去冒险,探讨数学知识。 马丁 克莱默,一位沉迷于创造不一样的课堂的德国数学教师,他的课堂以学生和现实中的实物为教具,不仅仅包含数学知识原理,还有很多的动手操作,而且每个教学案例后面都附有相关的教育学背景知识。了解了课堂成功的原因及其系统性背景,每位读者都可以从模仿者成为设计者。作者将她多年的研究成果和智慧传授给各位教师,书中的内容一定会在数学学习方面对所有人产生帮助。
全书正文7章,原稿有4个附录,译者额外增加两个附录。 正文首先介绍了毕达哥拉斯与著名的毕达哥拉斯定理,随后向读者展示了毕达哥拉斯定理的多种证明方式。随后,介绍了毕达格拉斯定理在数学上的应用、毕达哥拉斯三元组的性质及这些三元组与其他数学定理间的关系。最后三章则结合案例说明了毕达哥拉斯平均值、毕达哥拉斯与音乐及分形艺术中的毕达哥拉斯定理。 附录则是对正文的补充,将正文中一笔带过的一些生命在此处进行了详细描述。译者涂泓与冯承天补充了毕达哥拉斯三元组一些其他性质及其证明。
黄金分割也许是最奇妙、最有趣的数学现象。为了让读者充分欣赏黄金分割带来的各种视觉美,作者将带领读者经历一段几何体验之旅。本书追溯了黄金分割如何在历史上出现,介绍了一些相当不寻常的构建黄金分割的方法,此外还介绍了许多有黄金分割嵌入在其中的、令人惊讶的几何图形。本书还揭示了黄金分割比和斐波那契数列、毕达哥拉斯定理之间的联系,介绍了植物界中的黄金分割、分形中的黄金分割。本书只要求读者具备一些初等的几何学知识。
这是一个关于色彩、地图和数学的故事。只用四种颜色就能为世界地图染色,而且保证不会有两个邻接的区域颜色相同,这可能吗?在一百多年里,几乎每一位伟大的数学家都曾思考过这个看似简单的问题,但直到有了计算机的帮助,数学家们才得到一个完全的证明。然而,这种证明方式也引发了数学界的巨大争议 本书介绍了 四色问题 的历史及背后的数学知识,也讲述了人类如何思考、证明、解决一个数学问题的有趣历程。本书适合所有对科学史、数学、地图、计算机科学等问题感兴趣的读者阅读。
《自然哲学的数学原理》是一本划时代的科学巨著,从理论上对前人及同时代人(包括牛顿本人)的科学成果作了总结,建立了经典力学的基本理论基础。 本书涉及的内容极其广泛,包括天文、物理、生物、心理、政治、经济、法律与军事等领域。在书中,牛顿遵循古希腊的公理化模式,从定义、定律(公理)出发,导出命题;对具体的问题,从理论导出的结果和观察结果相比较。从科学角度去看,本书示范了一种现代科学理论体系的样板,包括理论体系的结构、研究方法和研究态度、如何处理人与自然的关系等多方面内容。 《自然哲学的数学原理》不仅影响了自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响,并因此形成了我们今天的 世界图像 。
数学分析(涵盖高等数学A、高等微积分和实分析)是大多数理科类本科专业必修的基础科目。《数学分析应该这样学》分为两部分,部分讲解什么是高等数学,以及高等数学如何从定义和公理出发,以证明为手段搭建一致的数学理论,同时为同学们制定了Z优的高等数学学习策略,并告诉同学们如何在心理上应对初学阶段难免的挫折感;第二阶段以深入浅出的方式讲解高等数学中的关键核心概念,包括序列、极限、连续、可微、可积和实数等,为学生的后续学习打下坚实的基础。 这本书还提供了学习建议,尤其是能让学生成功学习数学分析的技能,让刚接触高等数学的学生很容易理解和接受。
《从一到无穷大》是当今世界最有影响的科普经典名著之一,20世纪70年代末由科学出版社引进出版后,曾在国内引起很大的反响,直接影响了众多的科普工作者。本书根据原书最新版进行了修订,书中以生动的语言介绍了20世纪以来科学中的一些重大进展。先漫谈一些基本的数学知识,然后用一些有趣的比喻,阐述了爱因斯坦的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因)和宏观世界(如太阳系、星系等)方面的成就。全书图文并茂、幽默生动、深入浅出,适合中等以上文化的广大读者阅读。