在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
《自然哲学之数学原理》是一本划时代的科学巨著,是人类掌握的一个完整的科学的宇宙论和科学理论体系,其影响遍布经典自然科学的所有领域。本书对万有引力定律和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,成为现代工程学的基础。它标志着经典力学体系的建立。本书是人类科学史、思想史上的伟大著作。它不仅影响了人类几百年自然科学的研究,而且对人类的思维方式也产生过十分重要的影响。《自然哲学之数学原理》被法国科学家拉普拉斯评为 人类智慧的产物中卓越的杰作 。
《DK数学百科(全彩)》内容简介:几千年来,人类一直处于探索、发现数学真理的征途中。数学试图为伟大的思想找寻简洁的解释方法,数学致力于发现特征并总结特征。从上古时代的莱因德纸草书、芝诺运动悖论,中世纪的二项式定理、斐波那契数列,文艺复兴时期的梅森素数、帕斯卡三角形,启蒙运动时期的欧拉数、哥德巴赫猜想,19世纪的贝塞尔函数、黎曼猜想、拓扑学,到近现代的无限猴子定理、模糊逻辑、四色定理,本书介绍了数学领域的诸多伟大思想,并用通俗易懂的语言进行阐释。让我们一起翻开这本书,品味数学的优雅与美丽。
《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果与精神于一身。既是数学巨著,也是哲学巨著,并且*次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年*个印刷本出版,至今已有一千多种不同版本。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛能够与《几何原本》相比。汉语的*早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的全貌,纳入家庭藏书更是妄想。 徐光启在译此作时,对该书有
《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年首个印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
在《算术研究》的序言中,高斯便已明确指明了本书的研究范围:“数学中的整数部分,不包括分数和无理数”。《算术研究》的正文则分为七章。章讨论数的同余;第二章讨论一次同余方程;第三章讨论幂剩余并证明了费马小
《深度学习的数学》基于丰富的图示和具体示例,通俗易懂地介绍了深度学习相关的数学知识。第1章介绍神经网络的概况;第2章介绍理解神经网络所需的数学基础知识;第3章介绍神经网络的很优化;第4章介绍神经网络和误差反向传播法;第5章介绍深度学习和卷积神经网络。书中使用Excel进行理论验证,帮助读者直观地体验深度学习的原理。
《怎样解题:数学思维的新方法》这本经久不衰的畅销书出自一位 数学家 G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。